

GVK(GER) ECCENTRIC BALL VALVE

Total Engineering Solution Service

Mission

기초에 근거하여 원천 기술을 살리고 원천 기술을 극대화하여 세계 중심에 서는 것 To stand at the centre of the world by utilizing original technology based on the foundation and maximizing original technology

Vision

우리는 옳은 일과 가치 있는 일에 주저함이 없이 최선을 다하고 실천하여 세계의 중심에 서자 Let us put ourselves at the center of the world by doing our best and not hesitating to stand up for what is right and worthy

Valve Product Service

The Professional Provider of Automatic valve Actuastors

GVK Limited, founded in June 2020 by a leader with 38 years of experience, focuses on R&D while ensuring quality, price, and functionality through domestic production. The company offers Process Valves, Valve Equipment, and Total Engineering services for industries such as Gas, Refining, Petroleum, Power generation, Environment, and Water treatment. With a management team possessing 30-40 years of experience, GVK has developed numerous patents and adheres to quality standards like ISO 9001, 14001, 45001, and CE. Recognized for its advanced automatic control valves, GVK also supplies a range of Control Valves globally through OEM and ODM partnerships.

Although still in the early design and manufacturing stages, GVK has emerged as a leading company in Korea, equipped with skilled personnel and testing capabilities. The company aims to lower production costs, enhance efficiency, and improve quality while accumulating Hyper-Intelligence Valve Engineering (HIVE) technology. GVK Limited is committed to meeting customer needs with competitive pricing and high value-added services.

Mutually Beneficial Relationships

To Be Your Best Partner

Twenty years experience "one stop" goods and services

GVK(GER)Eccentric Ball Valve

Total Engineering Solution Service

GVK / OE ECCENTRIC BALL VALVE

Contents

Series OE

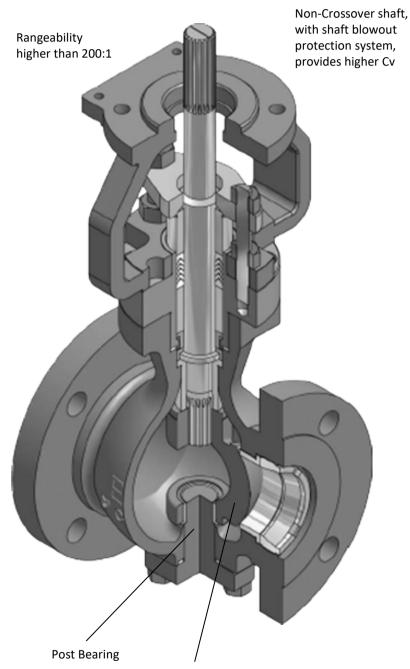
04 Structural Features

05

06

GVK GER Series Eccentric Ball Valve

Introduction


GVK ER series Eccentric Ball control valves have become one of the best control valves' choices in the market, mostly due to their capacity to handle large flows, superior rangeability, compact sizes and their shaft sealing design, all these characteristics provide a wide range of process solutions for most of control valves' industrial plant applications.

The GVK ER series eccentric half ball rotary control valve has been designed as a simple but yet robust, lightweight, and more economically-built alternative to our well known Exc Series, eccentric plug rotary valve design.

Our GVK Limited was designed to comfortably handle differential pressures of up to 725 psi (50 bar), temperature ranges from -150°F to 752°F (-100°C to 400°C), in sizes from 1" to 4", and body class ANSI 150-300 or DIN PN 16-40.

The GVK ER series eccentric plug provides an excellent rangeability 200:1, which is significantly higher than that of globe valves; 50:1 or 20:1 displayed in most butterfly valves. Several reduced trim sizes are also available for each valve size. These trim reductions offer a wider range of Cv values for every body size selection which enhances optimal sizing alternatives during the engineering application and selection process.

ANSI Class IV Shutoff – Metal Seat ANSI Class VI Shutoff – Soft Seat

Eccentric rotary plug lifts off of the seat during opening keeping seat wear to a minimum

GVK-ER Series Construction/Seating

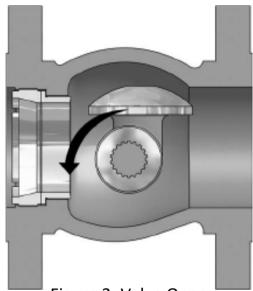


Figure 2: Valve Open

Design Characteristics

Designed with a rugged and well sized non-cross-over shaft, higher flow capacities can be achieved for every valve size. This superior quality design characteristic eliminates potential damage caused by corrosive and/or heavy slurry processes.

In most conventional rotary control valves the shaft crosses over the valve stream line therefore causing a significant reduction in flow capacity and additionally causing unnecessary wear of the shaft. The GVK-ER valve configuration assures a higher Cv capacity. While in the open position the streamlined fluid flow is not affected since the plug is kept totally retracted and away from the natural flow of the medium.

When the plug moves to the closed position, and due to its double-eccentricity configuration, the plug slides easily into its seat in such an angle that eliminates any direct metal-to-metal contact with its seat. This unique design characteristic contributes to drastic reductions of seat wear, therefore, less maintenance and service requirements.

As the valve opens and the eccentric plug slides smoothly off the seat, the possibility for the water-hammer effect to occur is greatly reduced, this is mainly due to the "zero breakout torque" characteristics provided by the GVK ER series eccentric ball.

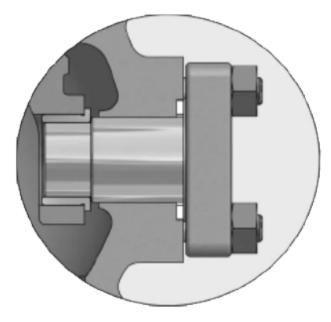


Figure 3: Post Bearing

This "zero-breakout torque" feature also allows for the selection and usage of smaller actuators which translates into less initial costs and life-time-maintenance costs.

Our valve design engineers have combined in one valve excellent features such as a large dimensioned post bearing system (Fig. 3), and a well sized shaft and plug made in hardened 17-4PH as a standard, which together provide excellent tight shutoff characteristics as well as increased life expectancy of the inner parts of this assembly.

The GVK-ER displays a large size packing box which complies to ISA requirements and a shaft system that complies with ANSI B 16.34 standards, built in such a way as to prevent shaft blowout when the valve is still under pressure. Reduced trim sizes 70%, and 40% are offered to obtain a wide range of flow capacity.

GVK-ER

Construction Materials

Built For High Performance

Manufactured with a rugged oversized shaft and post bearing, the GVK ER series rotary control valve prevents damages that may occur on its own shaft. The rotary plug is manufactured in its standard configuration with 17-4 PH heat hardened stainless steel, however the inner parts assembly can be also constructed in solid Alloy #6 type steel, providing for an excellent tight shutoff and enhancing its use in a wide range of applications such as in flashing conditions, corrosive services, mild cavitation, and steam services as well. The non-crossover shaft design, a characteristic of the GVK ER series eccentric ball rotary control valve pervents the line from clogging, assuring an uninterrupted flow passage. When the valve is in the open position, the flow is not diverted to the seat or seat retainer, delivering excellent performance even after several years of operation. The connection between the plug and the shaft is achieved via a tight and precise splined connection, eliminating the use of keys and/or taper pins which are prone to corrosion and/or wear due to vibration. The rugged, rigid and heavyduty seat design is excellent for applications where the

valve is subjected to high pressure drops. The typical maintenance cycle of the GVK valves exceeds the period of five years and the service life expectation exceeds a period of twenty years.

Table IV: Body Specifications

Size (inches)	1; 1.5; 2; 3; 4 DN 25; 40; 50; 80; 100
End Connection	Flanged RF
Finish	125-250 Rc standard
Rating class	ANSI Class 150-300 DN PN 16-40
Face-to-face dimension	ISA S75.04
Seat Area	Full 100% Reduced 70% Reduced 40%
Leakage Class	ANSI Class IV – metal seat ANSI Clas VI – soft seat
Operating Temperature	-150° F to 752° F (-100°C TO 400°C)

After a detailed analysis of the GVK control valve under the reliability viewpoint, other considerations should be added to its performance such as: it can provide a flow capacity of up to 70% higher when compared to the eccentric plug rotary valves of other manufacturers. The GVK ER series can be installed in processes handling paper pulp concentration of up to 3%due to its non-crossover shaft design. The valve design permits the valve to withstand a pressure drop of up to 725 psi (50 bars) in the closed position. It also allows the valve to be installed with shaft upstream or downstream. Reduced trim areas of 70% and 40%. Leakage class ANSI Class IV with metal seat and Class VI with soft seat. Shaft blowout protecting system eliminates the risk of personal injury caused by fluid pressure, fires and process interruptions do to accidents. Plug rotation of 90 degrees with the use of a high performance double-acting rotary cylinder piston fail-safe spring actuator.

Table V: Flow Direction

Installation	Flow	Application
Standard	Shaft downstream flow into the convex plug face	Clean fluid No cavitation
Reversed	Shaft upstream flow onto the outward plug face	Fluid with entrained particles, cavitation or flashing

Table VI: Packing Temperature Limitations

Туре	Temperature				
of Material	°F	°C			
"V"-rings – PTFE	-150 to 450	-101 to 232			
Braided PTFE	-20 to 500	-28 to 260			
Grafoil	-20 to 752	-28 to 400			
PT	-20 to 450	-28 to 232			
PTG	-20 to 450	-28 to 232			
PTG XT	-20 to 550	-28 to 288			

^{*}Pressure class versus body material limitations must not be exceeded

Table VII: Standard Construction Materials Carbon Steel Sub-assembly

Part	Material Specifications	Specifications					
Part	Material Classification	ASTM Code (AMS No.)	UNS Code	Hardness Rc			
Body	Carbon steel – Cast	A216 WCB	J 03002				
Dlug	17-4PH – Cast	A747, Gr CB7-Cu-1	J 92180	35-38 C			
Plug	Alloy #6 – Cast	AMS 5387	R 30006	40-42 C			
Shaft	17-4 PH – Bar	A564 Gr 630	S 17400	35 C			
Post	17-4 PH – Cast	A747 Gr CB7-Cu-1	J 92180	35-38 C			
Bearings (shaft/plug)	440C – Bar	A276	S 44004	55-60 C			
Seat retainer	316 – Cast	A351 Gr CF8M	J92900				
	316 – Bar	A479 Gr 316	S 31600				
Metal seat	420 – Cast	A743 Gr CA40	J 91160	38-45			
	Alloy #6 – Cast	AMS 5387	R 30006	40-42 C			
Soft seat	316 – Bar / PTFE	A479 Gr 316	S 31600				
Thrust bearing	316 – Bar / 440 Bar	A479 Gr 316 / A276	S 31600 / S 44004	55-60 C			
Gland flange	316 – Cast	A351 Gr CF8M	J 92900				
Packing follower	316 – Bar	A479 Gr 316	S 31600				
Packing spacer	316 – Bar	A479 Gr 316	S 31600				

Table VIII: Standard Construction Material Stainless Steel Sub-assembly

	Material Specifications	Specifications				
Part	Classification	ASTM Code (AMS No.)	UNS Code	Hardness Rc		
Body	316 – Cast	A351 Gr CF8M	J 92900			
Dlug	17-4PH – Cast	A747, Gr CB7-Cu-1	J 92180	35-38 C		
Plug -	Alloy #6 – Cast	AMS 5387	R 30006	40-42 C		
Shaft	17-4 PH – Bar	A564 Gr 630	S 17400	35 C		
Post	17-4 PH – Cast	A747 Gr CB7-Cu-1	J 92180	35-38 C		
Bearings (shaft/plug)	Duplex – Cast	A890 4A	J 92205	15-25		
Seat retainer	316 – Cast	A351 Gr CF8M	J92900			
Metal seat	316 – Bar / CVD-5B	A479 Gr 316	S 31600	72 C		
ivietai seat	Alloy #6 / CVD-5B	AMS 5387	R 30006	40-42 C / 72 C		
Soft seat	316 – Bar / PTFE	A479 Gr 316	S 31600			
Thrust bearing	316 – Bar / Duplex 2205	A479 Gr 316 / A890	S 31600 / J 92205	16 / 15-25		
Gland flange	316 – Cast	A351 Gr CF8M	J 92900			
Packing follower	316 – Bar	A479 Gr 316	S 31600			
Packing spacer	316 – Bar	A479 Gr 316	S 31600			

GVK-ER Body Materials

Table IX: Body Pressure and Temperature Limitations (ASME 16.34)

Material	End	Pre	ssure	Tempe	erature
Material	Connections	PSI	Bar	°F	°C
		285	19,7	-20 to 100	-29 to 38
		260	17,3	200	93
		250	17,2	300	149
		245	16,9	400	204
	ANSI 150#	230	15,9	500	260
		210	14,5	600	316
		205	14,1	650	343
ASTRA A 245 C. WCD		195	13,4	750	399
ASTM A-216 Gr. WCB		725	50,0	-20 to 100	-29 to 38
Carbon Steel		675	46,5	200	93
		655	45,2	300	149
		635	43,8	400	204
	4 1 1 2 2 2 2 1	600	41,4	500	260
	ANSI 300#	545	37,6	600	316
		535	36,9	650	343
		505	34,8	750	399
		275	19,0	-20 to 100	-29 to 38
		205	14,1	200	93
		185	12,8	300	149
		175	12,1	400	204
	ANSI 150#	170	11,7	500	260
		165	11,4	600	316
		160	11,0	750	399
ACTNA A 254 C C5084		725	50,0	-20 to 100	-29 to 38
ASTM A-351 Gr. CF8M		535	36,9	200	93
Stainless Steel		485	33,4	300	149
		455	31,4	400	204
		450	31,0	500	260
	ANSI 300#	435	3,0	600	316
		430	29,7	650	343
		420	29,0	700	371
		410	28,3	750	399

Table X: Maximum Pressure Drop*

Nominal Valve Size					Maximum Pre 90 Degrees (Bidirection	Rotation	
Inches	DIN	Inch	mm	Inch	mm	PSI	Bar
1	DN 25	0.44	11	.70	17,98	725	50
1.5	DN 40	0.62	16	1.1	27,98	725	50
2	DN 50	0.62	16	1.36	34,75	725	50
3	DN 80	0.90	23	2.35	59,92	725	50
4	DN 100	0.90	23	3.03	76,95	725	50

^{*}The maximum allowable pressure drop is based upon shaft mechanical resistance, however, it is limited to the pressure class. Standard limitations according to the pressure class should not be exceeded.

GVK-ER series Packings

The OpEXL rotary valve is built with a large packing box which gives a longer service life to the packing assembly. The OpEXL Packing box design allows for the use of a large number of packing system options, and fully complies with the most demanding fugitive emission control regulations in modern industrial processes.

Standard Packing

The OpEXL standard packing set is composed by PTFE "V" rings, Figures 8A and 8B. The PTFE "V" rings are the most used packing system since their introduction, providing exceptional tight sealing. They provide a very low friction coefficient, good mechanical resistance and excellent resistance to corrosion. The PTFE "V" rings are the most common application choice for gasketing material.

The PTFE "V" rings are used within temperature ranges of -150 to 450°F (-101 to 232°C). High Temperature Packing The OpEXL formed packing rings, Figures 9A and 9B, is an alternative choice whenever the operating temperature exceeds that determined for the use of PTFE "V" rings. The materials employed in the formed packing rings of the OpEXL are braided PTFE for use in temperatures up to 500°F (260°C) and Grafoil for use in temperatures up to 752°F(400°C). The Grafoil formed packing rings are an excellent choice whenever packing is subjected to high operating temperatures, however it should be noted that the demand of high forces required to achieve a tight sealing results in a significant friction increase forces as the valve plug turns.

Special Packing

The PT type packing set, Figure 10A, is composed by a set of "V" type rings under compression by an assembly of disc springs that result in a "live-loading" effect. This system achieves a sealing level of below 500 ppm. The PT type packing combines the superior virgin PTFE "V" rings quality with the PTFE "V" rings combined with carbon filament wound. The PTG type packing, Fig. 10B, is composed of an advanced packing set that is capable of keeping a sealing rate very below 500 ppm (at a 10 ppm step rate). The packing set is composed by the combination of PTFE "V" rings with carbon filament wound and Kalrez® "V" rings, an advanced material that provides a superior performance to the packing set. For temperatures higher than 450°F (232°C) the packing set is employed. This type of packing utilizes rings instead the PTFE/carbon rings.

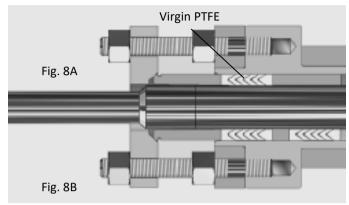


Figure 8A: Standard Packing: "V" rings Figure 8B: Double Packing: "V" rings

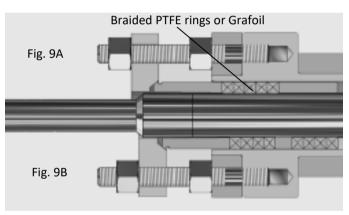


Figure 9A: Packing: Formed Rings
Figure 9B: Double Packing: Formed Rings

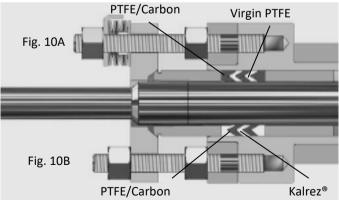


Figure 10A: PT Packing Set Figure 10B: PTG Packing Set

GVK-ER series

Specifications/Selection

Table XI: Maximum Allowable Pressure Actuator versus Supply Pressure (PSI/Bar)

Makes		•					Actua	ator Size	<u> </u>					
Valve Nominal		ir oply		290							37			
Size		sure			Trim A				Trim Area					
(Inches)			100			0%	40		100)%	40%	
	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar	PSI	Bar
	40	2,7	725	50,0	725	50,0	725	50,0						
	60	4,1	725	50,0	725	50,0	725	50,0						
1	80	5,5	725	50,0	725	50,0	725	50,0						
	100	6,9	725	50,0	725	50,0	725	50,0						
	150	10,3	725	50,0	725	50,0	725	50,0						
	40	2,7	725	50,0	725	50,0	725	50,0						
	60	4,1	725	50,0	725	50,0	725	50,0						
1.5 & 2	80	5,5	725	50,0	725	50,0	725	50,0						
	100	6,9	725	50,0	725	50,0	725	50,0						
	150	10,3	725	50,0	725	50,0	725	50,0						
	40	2,7	350	24,1	500	34,5	690	47,6	685	47,2	725	50,0	725	50,0
	60	4,1	500	34,5	650	44,8	725	50,0	725	50,0	725	50,0	725	50,0
3	80	5,5	620	42,7	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0
	100	6,9	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0
	150	10,3	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0
	40	2,7	210	14,5	295	20,3	410	28,3	400	27,6	580	40,0	725	50,0
	60	4,1	300	20,7	415	28,6	580	40,0	580	40,0	725	50,0	725	50,0
4	80	5,5	375	25,8	530	36,5	725	50,0	725	50,0	725	50,0	725	50,0
	100	6,9	445	30,7	625	43,1	725	50,0	725	50,0	725	50,0	725	50,0
	150	10,3	530	36,5	725	50,0	725	50,0	725	50,0	725	50,0	725	50,0

Note: The pressure limitations should be limited to the body and flanges pressure class.

Table XII: Seat Maximum Pressure Drop

Type of Seat	Process Medium	Open P	osition	Closed Position		
	ivieaium	PSI	Bar	PSI	Bar	
Metal Seal	Liquids, Vapors	363	24,7	725	50,0	
Metal Seal	Gases	725	49,3	725	50,0	
Soft Seal	Liquids, Vapors	145	9,8	725	50,0	
Soft Seal	Gases	290	19,7	725	50,0	

Note: Pressure limitations should be limited to body and flange pressure classes.

Table XIII: Yoke Gasket/Post Bearing Maximum Pressure/Temperature

Gasket	Pres	sure	Temperature		
Material	PSI	Bar	PSI	Bar	
PTFE	725	50	350	186	
316 SS/Grafoil	725	50	752	400	

Table XIV: Trim Material

Body Sub-assembly Carbon Steel

Plug	Seat	Bearings	Shaft	Post Bearing
17-4 PH	316 Stainless steel	440C Stainless steel	17-4 PH	17-4 PH
17-4 PH	420Stainless steel	440C Stainless steel	17-4 PH	17-4 PH
Alloy #6	Alloy #6	440C Stainless steel	17-4 PH	17-4 PH

Body Sub-assembly Carbon Steel – NACE

Plug	Seat	Bearings	Shaft	Post Bearing
Alloy #6	316 stainless steel	Duplex 2205	A 453 Gr 660	A 453 Gr 660
Alloy #6	Alloy #6	Duplex 2205	A 453 Gr 660	A453 Gr 660

Body Sub-assembly Stainless Steel

Plug	Seat	Bearings	Shaft	Post Bearing
17-4 PH	316 Stainless steel	Duplex 2205	17-4 PH	17-4 PH
Alloy #6	Alloy #6	Duplex 2205	17-4 PH	17-4 PH

Body Sub-assembly Stainless Steel – NACE

Plug	Seat	Bearings	Shaft	Post Bearing
Alloy #6	316 stainless steel	Duplex 2205	A 453 Gr 660	A 453 Gr 660
Alloy #6	Alloy #6	Duplex 2205	A 453 Gr 660	A453 Gr 660

Fluid	Plug	Seat	Bearings	Flow Direction
Industrial Air and Liquids*	17-4 PH	AISI 316	440C; Duplex 2205	Shaft downstream
Liquid Hidrocarbon	17-4 PH	AISI 316	440C; Duplex 2205	Shaft downstream
Elquid Hidrocarbori	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft downstream
Clean Gases	17-4 PH	AISI 316	440C; Duplex 2205	Shaft downstream
Clean Liquids	17-4 PH	AISI 316	440C; Duplex 2205	Shaft upstream
Clean Liquids w/Cavitation or Flashing	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft upstream
Liquids not clean, Slurry or Abrasive	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft upstream
Liquids not clean, w/Cavitation or Flashing	Alloy #6	Alloy #6	440C; Duplex 2205	Shaft upstream
Non-corrosive Chemical Products	17-4 PH	AISI 316	440C	Shaft downstream
Corrosive Chemical Products	Alloy #6	AISI 316	Duplex 2205	Shaft downstream
Corrosive chemical Products	Alloy #6	Alloy #6	Duplex 2205	Shaft upstream
Water Stream – 150 PSI	17-4 PH	AISI 420	440C	Shaft downstream
Water Stream – 300 PSI	Alloy #6	Alloy #6	440C	Shaft downstream

^{*} Except O2

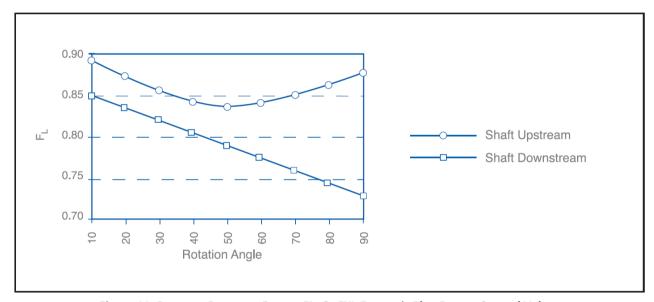


Figure 11: Pressure Recovery Factor, FL: OpEXL Eccentric Plug Rotary Control Valve

Piping Size Effect on Valve Cv Coefficient

The nominal Cv values indicated on the Tables XVI and XVII

are considered for a line size valve installation, where inlet/outlet pipe and valve sizes are the same. When the valve is concentrically installed in pipelines with higher nominal sizes, the Cv coefficient is affected and should be multiplied by the "PCF" factor in Table XV.

Table XVI: Cv Correction Factor

Trim Area	Piping Correction Factor, FCF – d/D*								
%	0.4	0.05	0.06	0.7	0.08	0.09	1		
100			0.91	0.94	0.97	0.99	1		
70	0.93	0.94	0.96	0.97	0.98	0.99	1		
40	0.98	0.98	0.99	0.99	0.99	0.99	1		

^{*} d = Nominal Valve Size

D = Larger Piping Size

Flow Coefficient: Cv

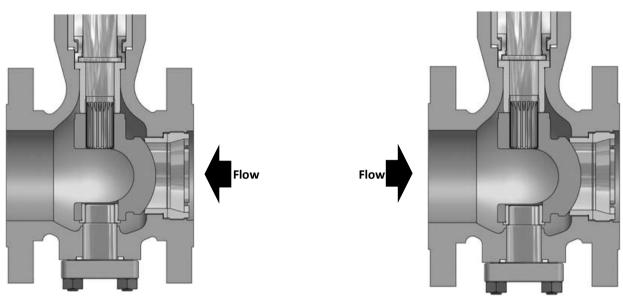
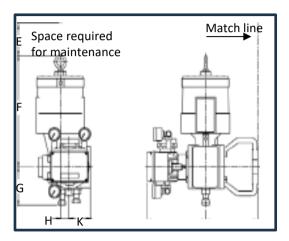


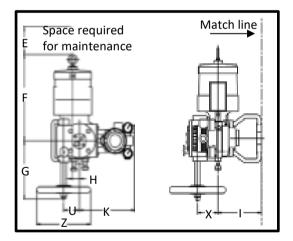
Figure 12: Shaft Downstream

Figure 13: Shaft Upstream


Table XVII: Maximum Flow Capacity (Cv) - Shaft Downstream

Trime Area	Opening Angle				Valv	ve Nomin	al Size (Inch)						
Trim Area			1	1.	1.5		2		3		4			
%		Meta	l Soft	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft			
	90	18	10	47	39	80	17	245	245	408	408			
	80	17.7	9.8	44	37	78	69	224	224	380	380			
	70	17.4	9.7	40	33	64	57	186	186	309	309			
	60	15.9	8.8	34	28	53	47	150	150	245	245			
100	50	13.3	7.4	29	24	43	38	126	126	207	207			
	40	10.4	5.8	22	18	35	31	99	99	162	162			
	30	7.6	4.2	16	13	26	23	73	73	118	118			
	20	4.2	2.4	9.2	7.6	15	13	41	41	66	66			
	10	2.1	1.2	4.5	3.7	5	4	21	21	33	33			
70	90	13	7	33	33	53	53	182	182	269	269			
40	90	7	6	19	19	32	32	104	104	170	170			

Table XVIII: Maximum Flow Capacity (Cv) - Shaft Upstream


Tuble Aviii. Maximum Flow capacity (cv) Share opstream														
Trim Area	Opening		Valve Nominal Size (Inch)											
%	Opening	1	<u>l</u>	1.5	1.5		2		3		ļ			
70	Angle	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft	Metal	Soft			
	90	21	12	50	40	78	69	218	218	305	305			
Ī	80	20.6	11.8	48	38	74	65	198	198	295	295			
	70	19.5	11.1	44	35	66	58	170	170	263	263			
	60	17.7	10.1	40	32	55	49	142	142	225	225			
100	50	15.7	9.0	33	26	45	40	115	115	183	183			
Ī	40	12.5	7.1	26	21	36	23	92	92	146	146			
Ī	30	9.1	5.2	19	15	26	17	67	67	106	106			
	20	5.4	3.1	11.5	9.2	15	13	40	40	63	63			
	10	2.0	1.1	4.2	3.4	4.7	4.2	15	15	23	23			
70	90	15	8	35	35	55	55	167	167	223	223			
40	90	8	6	20	20	31	31	68	68	150	150			

Actuator Sub-assembly Dimensions

	Dimensions (inches / mm)													
Actuator	E		F		(G		Н		I		К		/
Size	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
290	6.0	152	13.1	334	4.6	116	1.1	29	6.8	174	2.9	74	7.7	196
29 EF	9.3	236	17.4	441	4.6	116	1.1	29	6.8	174	2.9	74	7.7	196
370	8.0	203	18.1	461	5.6	144	2.0	51	6.8	174	3.8	96	7.7	196
37 EF	9.8	249	24.0	609	5.6	144	2.0	51	6.8	174	3.8	96	7.7	196

Fig. 14: RA Series Actuator with Positioner

		Dimensions (inches / mm)													
Actuator	F		G		Н		I		K		U		7	X	
Size	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	
290	12.1	334	8.9	226	1.1	29	6.8	174	9.2	233	2.6	67	3.3	83	
29 EF	17.4	441	8.9	226	1.1	29	6.8	174	9.2	233	2.6	67	3.3	83	
370	18.1	461	9.4	238	2.0	51	6.8	174	10.1	256	3.4	86	3.3	83	
37 EF	24.0	609	9.4	238	2.0	51	6.8	174	10.1	256	3.4	86	3.3	83	

Fig. 15: RA Series Actuator w/ Handwheel & Positioner

GVK-ER series Body Sub-Assembly Dimensions

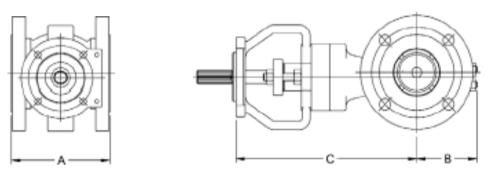
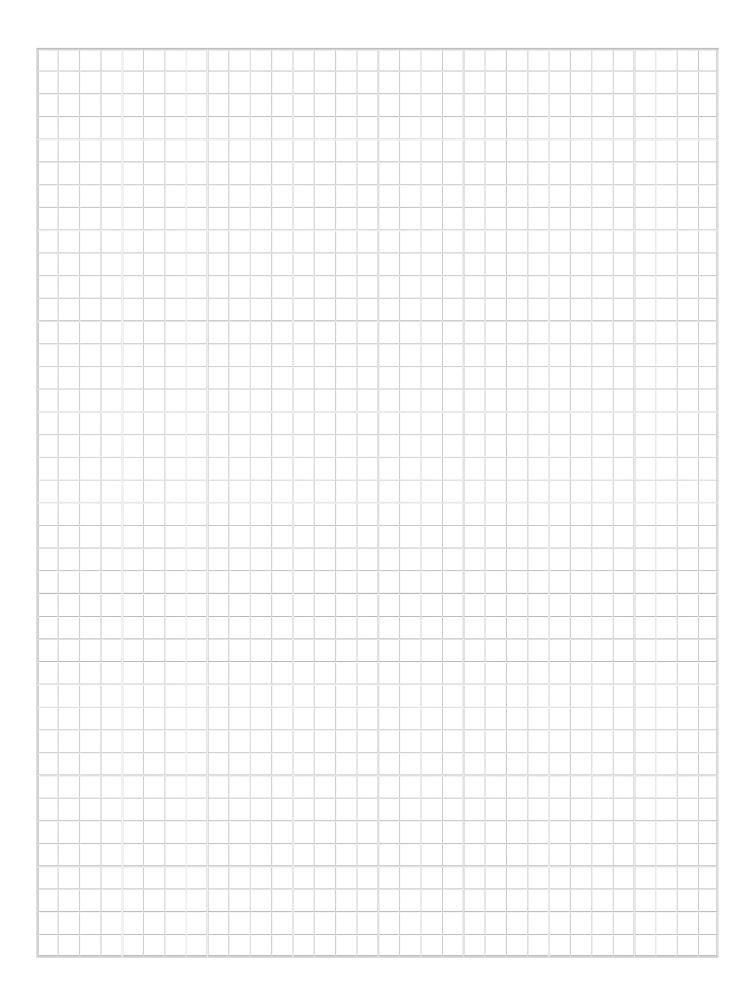
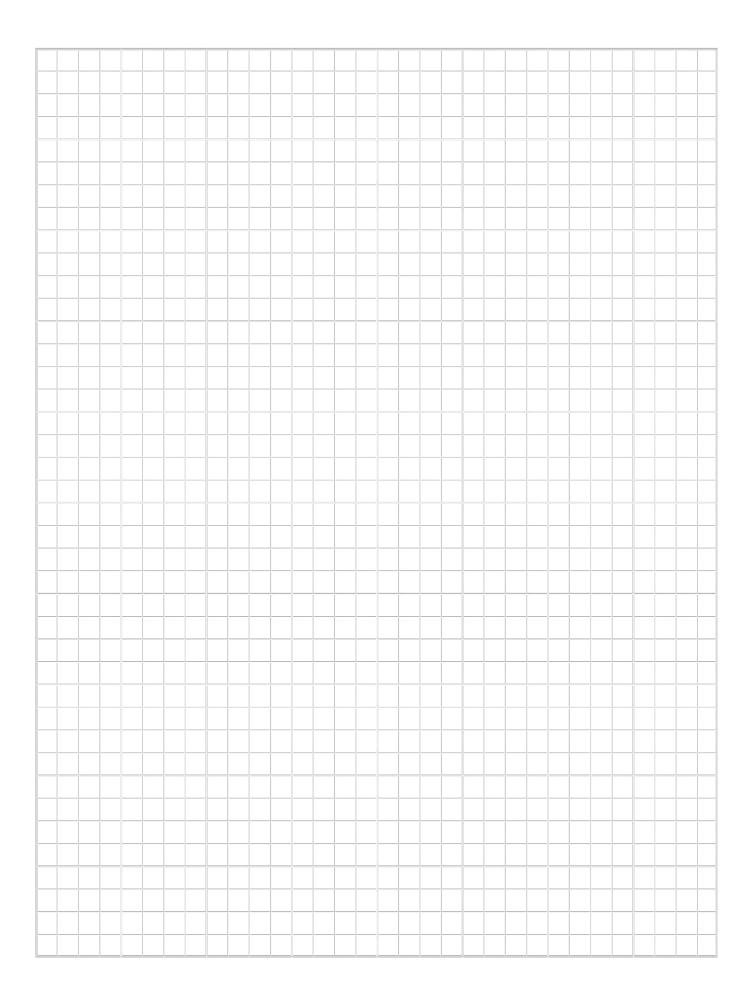




Fig. 16: GVK-ER series Body Sub-assembly

Dim	Dimensions				Valve Size (Inches)		
	iension	3	1	1.5	2	3	4
	150	in.	4	4.5	4.9	6.5	7.6
A	150	mm	102	114	124	165	194
A	200	in.	4	4.5	4.9	6.5	7.6
	300	mm	102	114	124	165	194
	150	in.	2.7	2.8	2.9	4	4.2
В		mm	69	71	74	102	107
P .	200	in.	2.7	2.8	2.9	4	4.2
	300	mm	69	71	74	102	107
	150	in.	8.7	9.8	9.8	12	12.2
С	150	mm	222	248	250	304	309
	200	in.	8.7	9.8	9.8	12	12.2
	300	mm	222	248	250	304	309

Product Service Qualified Certificate

ISO 9001:2015 ISO 14001:2015 ISO 45001:2018

CE: Globe Control Valve

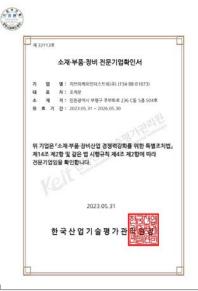
CE: Ball Valve

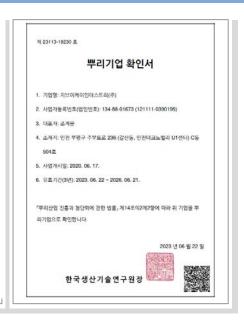
Research Institute

ASME U, PP Stemp

EAC: RUSSIA TRCU

API 6D / 600 By KSM




Venture company

Material · Part · Equipment

Rooting Enterprise

GVK(GER) ECCENTRIC BALL VALVE

Total Engineering Solution Service

GVK CO.,LTD.

HEAD OFFICE

Techno Valley C-503, 236, Jubuto-ro, Bupyeong-gu, Incheon, Republic of Korea

> TEL +82-32-678-7972 FAX +82-32-678-7973 EMAIL ican@gvkvalve.com

> > www.gvkvalve.com