

GVK(KSF) PRESSURE SAFETY VALVE

Total Engineering Solution Service

Mission

기초에 근거하여 원천 기술을 살리고 원천 기술을 극대화하여 세계 중심에 서는 것 To stand at the centre of the world by utilizing original technology based on the foundation and maximizing original technology

우리는 옳은 일과 가치 있는 일에 주저함이 없이 최선을 다하고 실천하여 세계의 중심에 서자 Let us put ourselves at the center of the world by doing our best and not hesitating to stand up for what is right and worthy

GLOBAL VISION KOREA

Valve Product Service

GVK Limited, founded in June 2020 by a leader with 38 years of experience, focuses on R&D while ensuring quality, price, and functionality through domestic production. The company offers Process Valves, Valve Equipment, and Total Engineering services for industries such as Gas, Refining, Petroleum, Power generation, Environment, and Water treatment. With a management team possessing 30-40 years of experience, GVK has developed numerous patents and adheres to quality standards like ISO 9001, 14001, 45001, and CE. Recognized for its advanced automatic control valves, GVK also supplies a range of Control Valves globally through OEM and ODM partnerships.

Although still in the early design and manufacturing stages, GVK has emerged as a leading company in Korea, equipped with skilled personnel and testing capabilities. The company aims to lower production costs, enhance efficiency, and improve quality while accumulating Hyper-Intelligence Valve Engineering (HIVE) technology. GVK Limited is committed to meeting customer needs with competitive pricing and high value-added services.

The Professional Provider of Automatic valve Actuastors

Mutually Beneficial Relationships

To Be Your Best Partner

Twenty years experience "one stop" goods and services

KSF SERIES Pressure Safety Valve

Total Engineering Solution Service

GVK / KSF SeriesPressure Safety Vavle

Contents

Series KSF

- 04 Structural Features
- 05
- 06

Design Fundamentals

Introduction

A pressure relief valve is a safety device designed to protect a pressurized vessel or system during an overpressure event. An overpressure event refers to any condition which would cause pressure in a vessel or system to increase beyond the specified design or maximum allowable working pressure. Since pressure relief valves are safety devices, there are many Codes and Regulations written to control their design and application. The purpose of this discussion is to familiarize you with the various parameters involved in the design of a pressure relief valve and provide brief introduction to some of the Codes and Standards which govern the design and use of pressure relief valves.

Many electronic, pneumatic, and hydraulic systems exist today to control fluid system variables, such as pressure, temperature, and flow. Each of these system requires a power source of some type, such as electricity or compressed air in order to operate. A pressure relief valve must be capable of operating at all times, especially during a period of power failure when system controls are nonfunctional. The sole source of power for the pressure relief valve, therefore, is the process fluid.

Once a condition occurs, which causes the pressure in a system or resselto increase to a dangerous level, the pressure relief valve may be the only device remaining to prevent a catastrophic failure. Since reliability is directly related to the complexity of the device, it is important that the design of the pressure relief valve be as simple as possible.

The pressure relief valve must open at a predetermined set pressure, flow a rated capacity at a specified overpressure, and shut off when the system pressure has returned to a safe level. Pressure relief valves must be designed with materials compatiable with all process fluids from simple air and water to the most corrosive media. With means to derive maximum fluid capacity for a given pipe size, and with consistently smooth stable operation on all fluids and fluid phases.

Spring Loaded Design

The basic spring loaded pressure relief valve has been developed to meet the need for a simple, reliable system actuated device to provide overpressure protection. Figure 1 shows the construction of a spring loaded pressure relief valve. The valve consists of a valve inlet or nozzle mounted on the pressurized system, a disc held against the nozzle to prevent flow under normal system operating conditions, a spring to hold the disc closed, and a housing to contain the operating elements. The spring is adjustable the vary the pressure at which the valve will open. Figure 2 is a simple sketch showing the disc held in the closed position by the spring. When system pressure reaches the desired opening pressure. the force of pressure acting over Area A1 equals the force of spring and the disc will lift and allow fluid to flow out through the valve. When pressure in the system returns to a safe level, the valve will reclose.

When a pressure relief valve begins to lift, the spring force increase. This means that system pressure must increase if lift is to continue. For this reason pressure relief valves are allowed an overpressure allowance to reach full lift. This allowable overpressure can vary from 3% for valves on fired vessels to 10% for valves on unfired systems. This margin is relatively small and some means must be provided to assist in the lift effort.

Most pressure relief valves, therefore, have a secondary control chamber or huddling chamber to enhance lift. A typical configuration is shown in Figure 3. As the disc begins to lift. fluid enters the control chamber exposing a larger area of the disc to system pressure A2(Figure 2). This causes an

incremental change in force which over compensates goes the increase in spring force and causes the valve to open at a rapid rate. At the same time, the direction of the fluid flow is reversed and the momentum effect resulting from the change in flow direction further enhances lift. These effects combine to allow the valve to achieve maximum lift and maximum flow within the allowable overpressure limits. Because of the larger disc Area A2(Figure 2) exposed to system pressure after the valve aclieves lift, the valve will not shut off until system pressure has been reduced to some level below the set pressure. The design of the control chamber determines where the shut off will occur.

The difference between the set pressure and the shut off pressure is called blowdown and is usually expressed as a percentage of set pressure. The required blowdown can vary from 4% for valves on fired vessels to indeterminate values for valves on unfired systems.

The design of the control or huddling chamber involves a series of design trade offs. If the design maximizes lift effort then blowdown will be long. If the design objective is to minimize blowdown, then the lift effort will be diminished. Many pressure relief valves are, therefore, equipped with a control ring which can be adjusted to vary the geometry of the control chamber to meet a particular system operating requirement(Figure 2 & 3). Compatibility with the process fluid is achieved by careful selection of materials of construction. Materials must be chosen with sufficient strength to withstand the pressure and temperature of the system fluid. Materials must also resist chemical attack by the process fluid and the local environment to insure valve function is not impaired over long periods of exposure. Bearing properties are carefully evaluated for parts with sliding surfaces and the ability to achieve a fine finish in the seating surfaces of the disc and nozzle is required for tight shut off.

Back Pressure Considerations

In the past, pressure relief valves were generally vented to atmosphere. As processes have become more sophisticated and the emission of hazardous materials has become a widespread concern, pressure relief valves are required to vent into closed systems. When valves sre allowed to vent to atmosphere, the bonnet of the valve may be opened. This insures that pressure in the outlet of the valve is normally atmospheric and protects the spring from the harmful effects of high temperature fluid. With closed system applications, the bonnet must be totally enclosed. This introduces the possibility that back pressure will exist in the outlet of the valve.

A review of the force balance on the disc(Figure 2) shows that the force of fluid pressure acting on the inlet side of the disc will be balanced by the force of the spring plus whatever pressure exists on the outlet side of the valve. If pressure in the valve outlet varies while the valve is closed, the valve set pressure will change. If back pressure varied while the valve is open and flowing, valve lift and flow rate through the valve can be affected. Care must be taken in the design and application of pressure relief valves to compensate for these variations by simply changing the disc insert in a matter of minutes with minimal conversion parts.

Back pressure which may occur in the valve outlet system while the valve is closed is called static or superimposed back pressure. This back pressure may be a result of the valve outlet being connected to a normally pressurized system or may be caused by other pressure relief valves venting into a commo header. Compensation for superimposed back pressure which is constant may be provided by reducing the spring force. Under this condition the force of the spring plus back pressure acting on the disc would equal the force of the inlet set pressure acting to open the disc.

It must be remembered, however, that the valve of the set pressure will vary directly with any change in back pressure. When superimposed back pressure is variable, a balanced bellows design is recommened. A typical balanced bellows style valve is shown in Figure 4. The bellows is designed with an effective pressure area equal to the seat area of the disc. The bonnet is vented to insure that the pressure area of the bellows will always be exposed to atmospheric pressure and to provide a tell-tale should the bellows begin to leak. Variations in back pressure, therefore, will have no effect on set pressure. Back pressure may, however, affet flow.

Design Fundamentals

Back pressure, which may occur after the valve is open and flowing, is called dynamic or built up back pressure. This type of back pressure may be caused by fluid flowing from the pressure relief valve into the downstream piping system. Developed back pressure will not affect the valve opening pressure, but may have an affect on valve lift and flow. Where developed back pressure is expected to exceed 10% of set pressure, a balanced bellows design is recommened.

Nozzle Type

The inlet construction of pressure valves is either a full nozzle or semi nozzle. In a full nozzle valve, only the nozzle and disc are exposed to the fluid media when the valve is closed. In a semi-nozzle valve the nozzle, disc, and part of the valve body are exposed to the inlet fluid when the valve is closed. Semi nozzles are usually welded into the body and cannot be easily removed.

Balanced Bellows

In addition to offsetting the effects of variable back pressure, the bellows acts to seal process fluid from escaping to atmosphere and isolates the spring, bonnet, and guiding surface from contacting the process fluid. This is especially important for corrosive services.

Seat Leakage

Another important consideration in the design on a pressure relief valve is the ability to maintain tight shut off. Pressure relief valves are required to remain on systems for long periods of time under widely varying conditions of pressure and temperature. Seat leakage will result in continuous loss of system fluid and may cause progressive damage to the valve seating surfaces. Extreme leakage could result in premature opening of the valve. Allowable seat leakage limits for pressure relief valves are, therefore, many orders of magnitude more stringent than required for other types of valves.

These extremes of tightness are achieved by close control of part alignment, optically flat seating surfaces, and careful selection of materials for each application. A diligent maintenance schedule must be carried out in the field to maintain the leak tight integrity of the valve, particularly on a system where the pressure relief valve is cycled often. For additional tightness, where system conditions permit, soft seat or elastomer seat construction may be employed.

Must manufactures recommed that system operating pressure not exceed 90% of set pressure to achieve and maintain proper seat tight integrity.

Soft seat

O-ring soft seat seals provide positive closure at service pressures closer to the set pressure than is possible with metalto-metal seats assuring continuos, trouble-free service, and complete valve tightness after numerous pops.

Code and Standard

Many Codes and Standards are published throughout the world which address the design and application of pressure relief valves. The most widely used and recognized of these is the ASME Boiler and Pressure Vessel Code, commonly called the ASME Code. Most Codes and Standards are voluntary which means that they are available for use by manufacturers and users and may be written into purchasing and construction specifications. The ASME Code is unique in the United States and Canada in that it has been adopted by the majoruty of sate and provincial legislatures and is mandated by law.

The ASME Code provides rules for the design and construction of pressure vessels. Various sections of the Code cover fired vessels, nuclear vessels, unfired vessels, and additional subjects, such as, welding and nondestructive examination. Vessels manufactured in accordance with the ASME Code are required to have overpressure protection. The type and design of allowable overpressure protection devices is spelled out in detail in the Code.

The ASME Code also provides specific rules governing the application of overpressure protection, determination of and allowable tolerance on set pressure, allowable overpressure, required blowdown, application of multiple valves, sizing for fire, requirements for materials of construction, and rules for installation.

The most widely used pressure relief valve voluntary standards in the United States are published by the American Petroleum Institute(API). These Standards provide recommandations for pressure relief valve construction, sizing, installation, and maintenance. The API, more than any other body, has worked to standardize the ratings and size of pressure relief valves. API developed a series of inlet, orifice, oulet combinations for various flanged valve pressure classes which are utilized throughout the petroleum and process industry. These standard sizes are characterized by a series of fourteen(14) standard letter orifices ranging from D through T. Each letter refers to a specific effective orifice area. This orifice area is used in standard API formulations to calculate valve flow rate. The manufacturer is not required to produce a valve with a bore area equal to the effective area. Rather, he is obliged to produce a valve which will have a flow rate equal to or greater than that determined by the API formulation.

Design Fundamentals

Many other Standards are published which deal with the application and design of pressure relief valves peculiar to a specific industry. Additional Codes and Standards are written by various bodies throughout the world. A group is currently working within the International Standards Organization(ISO) to create an International Standard for pressure relief valve.

Sizing Pressure Relief Valve

The first step in applying overpressure protection to a vessel or system is to determine the set pressure allowable overpressure and required relieving capacity.

The set pressure and allowable overpressure can be easily determined by reference to the operating pressure of the system and Code under which the system or vessel will be built and inspected. The most difficult task is in determining the required relieving capacity. The pressure relief valve must relieve a sufficient amount of fluid to insure that pressure in the vessel or system never exceeds the specified overpressure. This means that all possible sources and causes of overpressure must be evaluated. Some examples could be failure of a stop valve to close, control system failure, fire, pump failure, uncontrolled chemical reaction, vessel isolation, and many more. The worst case combination of these factors is used to determine the required capacity.

Once these factors have been determined, the pressure relief valve is chosen so that the rated relieving capacity of the valve exceeds the required capacity derived from the worst case system failure analysis.

Summary

The purpose of this discussion has been to provide an introduction to some of the design considerations employed when designing a pressure relief valve and to the Codes and Standards which are employed in this industry to maintain a high level of product quality and reliability. More specific information may be found by referencing the ASME Code, various published Stanards and by consulting literature published by the pressure relief valve manufactures. A key point to keep in mind is the pressure relief valve is a safety device employed to protect a pressure vessel or system from catastrophic failure. With this in mind, the application of pressure relief valves should be assigned only to fully trained personnel and rules provided by the governing Codes should be strictly complied with.

Terminology for Pressure Relief Devices

1. Scope

1.1The Scope of this standard is to define pressure relief devices, their functional and operational characteristics, and to standardize the terminology covering such devices and their characteristics. These devices are intended to protect containers and equipment from abnormal internal or external pressure.

2. General

2.1 Pressure Relief Devices

A pressure relief devices is designed to open to prevent a rise of internal fluid pressure in excess of a specified valve due to exposure to emergency or abnormal conditions. It may also be a pressure relief valve, a non-reclosing pressure relief devices or a vacuum relief valve.

3. Type of Devices

3.1 Pressure Relief Valve

A pressure relief value is a pressure relief device which is designed to reclose and prevent the further flow of fluid after normal conditions have been restored.

3.1.1 Safety Valve

A safety valve is a pressure relief valve actuated by inlet static pressure and characterized by rapid opening or pop action.

3.1.2 Relief Valve

A relief valve is a pressure relief valve actuated by inlet static pressure which opens in proportion to the increase in pressure over the opening pressure.

3.1.3 Safety Relief Valve

A safety relief valve is a pressure relief valve characterized by rapid opening or pop action, or by opening in proportion to the increase in pressure over opening pressure, depending on application.

3.1.3.1 Conventional Safety Relief Valve

A conventional safety relief valve incorporate means of minimizing the effect of back pressure on the operational characteristics(opening pressure, closing pressure and relieving capacity)

3.1.3.2 Balanced Safety Relief Valve

A balanced safety relief valve incorporate means of minimizing the effect of back pressure on the operational characteristics(opening pressure, closing pressure and relieving capacity)

4. Parts of Pressure Relief Devices

4.1 Approach Channel

An approach channel is the passage through which the fluid must pass to reach the operating parts of a pressure relief device.

4.2 Discharge Channel

A discharge channel is the passage through which the fluid must pass beyond the operating parts of a pressure relief device.

4.3 Disc

A disc is the pressure containing movable element of a pressure relief valve which effects closure.

4.4 Lifting Device

A lifting device is a device for manually opening a pressure relief valve by the application of external force to lessen the spring loading which holds the valve closed.

4.5 Lifting Lever

See Lifting Device.

4.6 Nozzle

A nozzle is the pressure containing element which constitutes the inlet flow passage and includes the fixed portion of seat closure.

4.7 Seat

A seat is the pressure containing contact between the fixed and moving porions of the pressure containing elements of a valve.

5. Pressure Relief Valve Dimensional Characteristics

5.1 Actual Discharge Area

Actual discharge area is the measured minimum net area which determines the flow through a valve.

5.2 Bore Area

Bore area is the minimum cross sectional area of the nozzle.

5.3 Bore Diameter

Bore diameter is the minimum diameter of the nozzle.

5.4 Curtain Area

Curtain Area is the area of the cylindrical or conical discharge opening created between the seating surfaces by the lift of the disc above the seat.

5.5 Developed Lift

The developed lift is the actual travel of the disc from closed position to the position reached when the valve is at flow rating pressure.

5.6 Effective Discharge Area

Effective discharge area is a normal or computed area of flow through a pressure relief valve, differing from the actual discharge area, for use in recognized flow formulas to determine the capacity of a pressure relief valve.

5.7 Inlet Size

Inlet size is the normal pipe size of the inlet of a pressure relief valve, unless otherwise desighated.

5.8 Lift

Lift is the actual travel of the disc away from closed position when a valve is relieving.

5.9 Outlet Size

Outlet size is the normal pipe size of the outlet of a pressure relief valve, unless otherwise designated.

5.10 Rated Lift

Rated lift is the design lift at which a valve attains its rated relieving capacity.

5.11 Seat Angle

Seat angle is the angle between the axis of a valve and the seating surface. A flat seated valve has a seat angle of 90 degrees.

5.12 Seat Area

Seat area is the area determined by the seat diameter.

5.13 Seat Diameter

Seat diameter is the smallest diameter of contact between the fixed and moving position of the pressure containing elements of a valve.

6. Operational Charateristics of Pressure Relief Valve

6.1 Back Pressure

Back pressure is the static pressure existing at the outlet of a pressure relief device due to pressure in the discharge system.

6.2 Blowdown

Blowdown is the difference between actual popping pressure of a pressure of a pressure relief valve and actual reseating pressure expressed as a percentage of set pressure units.

6.3 Blowdown Pressure

Blowdown pressure is the value of decreasing inlet static pressure at which no further discharge is detected at the outlet of a safety relief value of the resilient disc type after the value has been subjected to a pressure equal to or above the popping pressure.

6.4 Built-up Back Pressure

Built-up back pressure is pressure existing at the outlet of a pressure relief device occasioned by the flow through the particular device into a discharge system.

6.5 Closing Pressure

Closing pressure is the value of decreasing inlet static pressure at which the valve disc reestablished contact with the seat or at which lift becomes zero.

6.6 Coefficient of Discharge

Coefficient of discharge is the ratio of the measured relieving capacity to the theoretical relieving capacity.

6.7 Cold Differential Test Pressure

Cold differential test pressure is the inlet static pressure at which a pressure relief valve is adjusted to open on the test stand. This test pressure includes corrections for service condition of back pressure and or temperature.

Terminology for Pressure Relief Devices

6.8 Flow Rating Pressure

Flow rating pressure is the inlet static pressure at which the relieving capacity of a pressure relief device is measured for rating purposes.

6.9 Start-to-discharge Pressure

Start-to-discharge pressure is the value of increasing inlet static pressure at which the first bubble occurs when a safety relief valve of the resilient disc type is tested by means of air under a specified water seal on the outlet.

6.10 Leak Test Pressure

Leak test pressure is the specified inlet static pressure at which a quantitative seat leakage test is performed in accordance with a standard procedure.

6.11 Measured Relieving Capacity

Measured relieving capacity is the relieving capacity of a pressure relief device measured at the flow rating pressure, expressed in gravimetric or volumetric units.

6.12 Opening Pressure

Opening pressure is the value of increasing inlet static pressure of a pressure relief value at which there is a measure lift, or at which the discharge becomes continuous as determined by seeing, feeling, or heating.

6.13 Overpressure

Overpressure is a pressure increase over the set pressure of a pressure relief valve, usually expressed as a percentage of a set pressure.

6.14 Popping Pressure

Popping pressure is the value of increasing inlet static pressure at which the disc moves in the opening direction at a faster rate as compared with corresponding movement at higher or lower pressures. It applies only to safety or safety relief values on compressible fluid service.

6.15 Rated Relieving Capacity

Rated relieving capacity is that portion of the measured relieving capacity permitted by the applicable code or regulation to be used as a basis for the application of a pressure relief device.

6.16 Relieving Pressure

Relieving pressure is set pressure plus overpressure.

6.17 Set Pressure

Set pressure is the value of increasing inlet static pressure at which a pressure relief valve displays one of the operational characteristics as defined under "opening pressure" "popping pressure" or "start-todischarge pressure" depending on service or as designated by the applicable code or regulation. It is one value of pressure stamped on the pressure relief valve.

Pressure Levels

Notes

1) Operating pressure may be any lower pressure required.

2) Set press re, and all ither values reted to it may be moved downward if operation pressure permits.

3) This chart is in accordance wiht the requirements of the ASME Boiler and Pressure Vessel Code, Sect, VIII Div. 1Pressure Vessels.

Selecting and specifying KSM Safety & Relief Valves is simple using the numbering system that follows. Each digit of the part number has a distinct significance. The digits describe the basic valve series, valve type, inlet / outlet type and pressure rating.

KSF series : Flange type, Full lift type

MODEL	ТҮРЕ	LEVER	USE CONDITION
KSF-8	Conventional	Yes	Steam, Air, Gas, Vapor
KSF-8B	Bellows	Yes	Steam, Air, Gas, Vapor, Back pressure
KSF-10	Conventional	No	Steam, Air, Gas, Vapor, Liquid
KSF-10B	Bellows	No	Steam, Air, Gas, Vapor, Liquid, Back pressure

150# RF

10	Conventional		otean, viii, eae, vapoi, Eiquia	
10B	Bellows	No	Steam, Air, Gas, Vapor, Liquid, Back pressure	
			KSF – 8 , 15A × D × 25A	ASME
	COMPA	NY CODI		
	K : Korea	Special Me	etal	

VALVE NAME

S : Safety & Relief Valve

CONNECTION TYPE

F : Flange Type

VALVE TYPE

8 : Lever 10 : No Lever 8B/10B : Bellows

INLET SIZE

15A~300A

ORIFICE CODE

See NOTE.1

OUTLET SIZE

25A~400A

STANDARD CODE

ASME : American Society of Mechanical Engineers KS : Korea Standard JIS : Japanese Industrial Standard

PRESSURE CLASS

ASME : 150# ~ 2500# KS & JIS : 10K ~ 200K

FACING

RF : Raised Face FF : Flat Face

[NOTE. 1] ORIFICE CODE

Code	D	Е	F	G	н	J	к	L	М	Ν	Р	Q	R	Т	v	W
Orifice	10	13	16	21	26	33	39	49	55	60	73	96	115	150	204	238

(unit:mm)

KS B 6216 Inlet Flange Dimension for Boiler

KS B 6216 Inlet Flange Dimension

									(unit:mm)										(unit:mm
Nominal	Nominal		Fla	nge		B	olt Ho	le	Dol4	Nominal	Nominal		Fla	nge		B	olt Ho	le	Della
Pressure	Diameter	D	t (min)	f	g	С	Number	h	DOIT	Pressure	Diameter	D	t (min)	f	g	С	Number	h	DOIL
	20	125	22	1	56	90	4	19	M16		20	140	30	1	60	100	4	23	M20
	25	130	22	1	67	95	4	19	M16		25	150	30	1	65	110	4	23	M20
	32	140	24	2	76	105	4	19	M16		32	175	34	2	75	130	4	25	M22
	40	155	24	2	81	120	8	19	M16		40	185	36	2	90	145	8	23	M20
	50	165	26	2	96	130	8	19	M16		50	205	38	2	100	160	8	25	M22
	65	200	28	2	116	160	8	23	M20		65	230	42	2	120	185	8	25	M22
10K	80	210	30	2	126	170	8	23	M20	45 K	80	255	44	2	130	205	8	27	M24
	(90)	225	30	2	136	185	8	23	M20		(90)	270	46	2	145	220	8	27	M24
	(30)	245	32	2	150	205	8	23	M20		100	310	50	2	165	250	8	33	M30
	100	240	34	2	192	205	12	25	M22		(115)	325	52	2	175	265	8	33	M30
	120	200	26	2	212	200	12	25	M22		125	335	54	2	195	275	12	33	M30
	100	325	20	2	212	200	12	20	IVIZZ		150	400	58	2	235	335	12	33	M30
	200	300	30	2	202	335	12	21	IVIZ4		200	460	66	2	285	390	12	39	M36
	20	130	22		50	95	4	19	IVI16		20	149	40	6	51	101.5	4	25	IVIZZ
	25	135	22	1	67	100	4	19	M16		20	179	40	6	73	12/	4	20	M24
	32	160	24	2	76	120	4	23	M20		10	216	52	6	02	165	8	21	M22
	40	165	24	2	81	130	8	19	M16		50	210	56	6	105	190.5	8	23	M24
	50	185	26	2	96	145	8	23	M20	65K	65	267	62	6	103	203	8	33	M30
	65	210	30	2	116	170	8	23	M20	UUIN	80	311	68	6	157	241.5	8	33	M30
20K	80	230	32	2	132	185	8	25	M22	-	(90)	311	68	6	157	241.5	8	33	M30
	(90)	240	34	2	145	195	8	25	M22		100	375	86	6	186	292	8	39	M36
	100	265	36	2	160	220	8	25	M22		(115)	375	86	6	186	292	8	39	M36
	125	290	38	2	195	245	12	25	M22		125	394	96	6	216	317.5	12	39	M36
	150	350	42	2	230	300	12	27	M24		150	483	105	6	270	393.5	12	46	M42
	200	410	46	2	275	350	12	33	M30		200	584	121	6	324	482.5	12	52	M48
	20	130	24	1	60	95	4	19	M16	_									
	25	135	24	1	70	100	4	19	M16	Remark :	The nom	inal c	liame	ter w	vithin	() sh	all no	t be	used
	32	160	26	2	80	120	4	23	M20		if possible	э.							
	40	165	28	2	90	130	8	19	M16										
	50	185	30	2	105	145	8	23	M20										
	65	210	34	2	130	170	8	23	M20										
30K	80	230	36	2	140	185	8	25	M22										
	(90)	250	38	2	150	205	8	25	M22										
	100	285	40	2	160	235	8	27	M24										
	125	315	40	2	105	265	12	27	M24										
	150	375	18	2	235	315	12	33	M30										
	200	125	40	2	200	270	12	35	Maa										
	200	433	54	2	200	310	12	30	11/133										

Bill of Materials - Conventional

Series KSF-10

Size 1/2"(15A)~8"(200A)

NO	Part Name	Standard Material
		DUCTILE
1	BODY	CARBON STEEL
		STAINLESS STEEL
		DUCTILE
2	BONNET	CARBON STEEL
		STAINLESS STEEL
0	OAD	CARBON STEEL
3	CAP	STAINLESS STEEL
4	SEAT	STAINLESS STEEL
5A	DISC	STAINLESS STEEL
5B	DISC HOLDER	STAINLESS STEEL
6		CARBON STEEL
0	SFINDLE	STAINLESS STEEL
		CARBON STEEL
7	SPRING	STAINLESS STEEL
		HIGH. TEMP. ALLOY
		BRONZE
8	ADJ. SCREW	CARBON STEEL
		STAINLESS STEEL
		BRONZE
9	ADJ. SCREW	CARBON STEEL
	LUCK NUT	STAINLESS STEEL
10		CARBON STEEL
10	SPRING GUIDE	STAINLESS STEEL
44		BRASS
11	DISC GUIDE	STAINLESS STEEL
10		BRASS
12	BLOW DOWN RING	STAINLESS STEEL
10		CARBON STEEL
15		STAINLESS STEEL
		NON-ASBESTOS
14	GASKET	PTFE
		GRAPHITE
45		CARBON STEEL
15	STUD. BULIS & NUTS	STAINLESS STEEL
		BRASS
16	DRAIN PLUG	CARBON STEEL
		STAINLESS STEEL
		NON-ASBESTOS
17	GASKET	PTFE
		GRAPHITE
		NON-ASBESTOS
18	GASKET	PTFE
		GRAPHITE

Bill of Materials - Conventional

Series KSF-8

Size 1/2"(15A)~8"(200A)

NO	Part Name	Standard Material					
		DUCTILE					
1	BODY	CARBON STEEL					
		STAINLESS STEEL					
		DUCTILE					
2	BONNET	CARBON STEEL					
		STAINLESS STEEL					
		BRONZE					
3	CAP	DUCTILE					
4	SEAT	STAINLESS STEEL					
5A	DISC	STAINLESS STEEL					
5B	DISC HOLDER	STAINLESS STEEL					
-		CARBON STEEL					
6	SPINDLE	STAINLESS STEEL					
		CARBON STEEL					
7	SPRING	STAINLESS STEEL					
		HIGH, TEMP. ALLOY					
		BRONZE					
8	ADJ. SCREW	CARBON STEEL					
		STAINLESS STEEL					
		BRONZE					
9	ADJ. SCREW	CARBON STEEL					
	LOCK NUT	STAINLESS STEEL					
		CARBON STEEL					
10	SPRING GUIDE	STAINLESS STEEL					
		BRASS					
11	DISC GUIDE	STAINLESS STEEL					
		BRASS					
12	BLOW DOWN RING	STAINLESS STEEL					
		BRASS					
13	LOCK BOLT	CARBON STEEL					
		STAINLESS STEEL					
	· · · · -	CARBON STEEL					
14	NUT	STAINLESS STEEL					
45		CARBON STEEL					
15	510D. BOL15 & NU15	STAINLESS STEEL					
10		BRASS					
10	LIFTING WASHER	CARBON STEEL					
47		BRONZE					
17	LEVER	DUCTILE					
40		BRASS					
18	CAP LOCK BOLT	CARBON STEEL					
19A	PIN	CARBON STEEL					
19B	DIVISION PIN	BRASS					
20	HEX. BOLT & NUT	CARBON STEEL					
		BRASS					
21	DRAIN PLUG	CARBON STEEL					
		STAINLESS STEEL					
22	FORK LEVER	DUCTILE					
		NON-ASBESTOS					
23	GASKET	PTFE					
		GRAPHITE					

Bill of Materials - Bellows

Series KSF for Bellows Type

Size 1"(25A)~8"(200A)

NO	Part Name	Standard Material
1	PODY	CARBON STEEL
1	BODT	STAINLESS STEEL
2	RONNET	CARBON STEEL
2	DONNET	STAINLESS STEEL
2	CAD	CARBON STEEL
3	CAP	STAINLESS STEEL
4	SEAT	STAINLESS STEEL
5A	DISC	STAINLESS STEEL
5B	DISC HOLDER	STAINLESS STEEL
6		CARBON STEEL
		STAINLESS STEEL
		CARBON STEEL
7	SPRING	STAINLESS STEEL
		HIGH. TEMP. ALLOY
8	AD.I. SCREW	CARBON STEEL
		STAINLESS STEEL
9	ADJ. SCREW	CARBON STEEL
	LOCK NUT	STAINLESS STEEL
10	SPRING GUIDE	CARBON STEEL
		STAINLESS STEEL
11	DISC GUIDE	BRASS
		STAINLESS STEEL
12	BLOW DOWN RING	BRASS
		STAINLESS STEEL
13	LOCK BOLT	
		STAINLESS STEEL
14	CASKET	DTEE
14	GASKET	CRADHITE
15	STUD. BOLTS & NUTS	STAINI ESS STEEL
		BRASS
16	DRAIN PLUG	CARBON STEE
		STAINLESS STEEL
		NON-ASBESTOS
17	GASKET	PTFE
		GRAPHITE
		NON-ASBESTOS
18	GASKET	PTFE
		GRAPHITE
40	OAOVET	VITON
19	GASKET	KALREZ
20	BELLOWS	STAINLESS STEEL
21	PLATE	STAINLESS STEEL
22		CARBON STEEL
22		STAINLESS STEEL
23	BEARING	STAINLESS STEEL

Bill of Materials - Conventional

Series KSF for Semi Nozzle Type

NO	Part Name	Standard Material				
1	PODV	CARBON STEEL				
'	BODT	STAINLESS STEEL				
-		CARBON STEEL				
2	BONNET	STAINLESS STEEL				
		DUCTILE				
3	CAP	CARBON STEEL				
		STAINLESS STEEL				
4	SEAT	STAINLESS STEEL				
5A	DISC	STAINLESS STEEL				
5B	DISC HOLDER	STAINLESS STEEL				
		CARBON STEEL				
6	SPINDLE	STAINLESS STEEL				
		CARBON STEEL				
7	SPRING	STAINI ESS STEEL				
		HIGH, TEMP, ALLOY				
		BRONZE				
8	ADJ SCREW	CARBON STEEL				
Ũ		STAINLESS STEEL				
		BRONZE				
9	ADJ. SCREW	CARBON STEEL				
Ũ	LOCK NUT	STAINI ESS STEFI				
		CARBON STEEL				
10	SPRING GUIDE	STAINI ESS STEFI				
11	DISC GUIDE	STAINI ESS STEEL				
12	BLOW DOWN RING	STAINLESS STEEL				
		CARBON STEEL				
13	LOCK BOLT	STAINI ESS STEFI				
		NON-ASBESTOS				
14	GASKET	PTFE				
		GRAPHITE				
		CARBON STEEL				
15	STUD. BOLTS & NUTS	STAINLESS STEEL				
16	LIFTING WASHER	CARBON STEEL				
17	LEVER	DUCTILE				
		CARBON STEEL				
18	HEX. BOLTS	STAINLESS STEEL				
19	HEX. BOLT & NUT	CARBON STEEL				
20	HEX. BOLT & NUT	CARBON STEEL				
		CARBON STEEL				
21	DRAIN PLUG	STAINLESS STEEL				
22	FORK LEVER	DUCTILE				
		NON-ASBESTOS				
23	GASKET	PTFE				
		GRAPHITE				
		NON-ASBESTOS				
24	GASKET	PTFE				
		GRAPHITE				
25	O-RING	VITON				
26	WRENCH BOLTS	STAINLESS STEEL				
27	BALL	STAINLESS STEEL				
28	BEARING	STAINLESS STEEL				
	1					

Size 10"(250A)~20"(500A)

Top Construction and Type

Screwed Cap Type

Standard Type

Screwed Cap and Test Gag Type

This test gag is handly for use in hydraulic static test. Replace with a plug and gasket after the test, otherwise the valve will not operate there by creating a dangerous situation.

Open Lever Type

This is used when hermetic sealing is not required. (with most uses for steam and air.)

Open Lever and Test Gag Type

Packed Lever

For services where tightness on the discharge side is necessary and where conditions are such that periodic testing is desirable.

Packed Lever and Test gag

General Dimension

Application : Conventional type

Size		CENTER	TO FACE		APPROX. HE	IGHT	Approx
	ORIFICE				н		Weight
Inlet×Orifice Dia.×Outlet	Code	L1	L2	KSF-10	KSF-8	KSF-10P	(kg)
1/2"×10×1"	D	96	92	194	196	254	6
3/4"×10×1"	D	96	92	194	196	254	7
1"×10×2"	D	114	105	228	246	280	12
1"×13×2"	E	114	105	228	246	280	13
1"×19×1.1/2"	*	114	105	228	246	280	13
1.1/4"×24×2"	*	125	127	277	311	-	14
1.1/2"×16×2"	F	121	124	304	333	364	20
1.1/2"×21×2.1/2"	G	121	124	304	333	364	22
1.1/2"×30×2.1/2"	*	121	124	304	333	364	22
1.1/2"×26×3"	Н	121	124	304	333	364	23
2"×33×3"	J	124	137	340	369	400	28
2"×38×3"	*	124	137	340	369	400	30
2.1/2"×49 ×4"	L	169	153	490	562	538	57
3"×39×4"	К	165	156	490	562	538	61
3"×49×4"	L	165	156	490	562	538	56
3"×61×4"	*	165	156	490	562	538	63
4"×55×6"	М	184	178	625	668	738	85
4"×60×6"	N	210	197	625	668	738	90
4"×73×6"	Р	210	197	625	668	738	100
5"×95×8"	*	241	248	723	770	748	173
6"×96×8"	Q	241	240	780	841	820	180
6"×115×8"	R	241	240	780	841	820	200
8"×150×10"	Т	279	276	880	942	920	260

Notes

1) *: Special orifice area.

2) Center to face tolerance : \pm 1.5mm for valve inlet sizes up to and including 4".

±3mm for valve inlet sizes larger than 4".

3) For inlet flange rating lager than 300 LBS may be change the dimension of center to face.

Application : Semi nozzle type

KSF-10

KSF-8

							(unit:mm)
SIZE	ODIFICE	SET PRESSURE	CENTER	TO FACE	APPROX	. HEIGHT	Approx.
	Code	Limit (kgf/cm²g)	14	12		Weight	
					KSF-10	KSF-8	(kg)
10"×204×14"	V	7	400	325	1340	1335	600
12"×238×16"	W	7	400	375	1360	1355	650
14" × 278 × 18"	Y	7	500	400	1460	1455	750
16"×292×18"	Z	7	500	425	1485	1480	850
18"×357×24"	A	7	630	500	1765	1760	1500
20"×397×24"	В	6	630	500	1935	1930	1800

1) Center to face tolerance : \pm 3mm.

2) Inlet/outlet flange rating standard : ASME 150 LBS.

General Dimension

Application : Bellows type

							(unit:mm)		
SIZE	ORIEICE	CENTER	TO FACE	4	APPROX. HEIGHT				
	Code	1.4	L2		Weight				
Inlet × Ormce Dia. × Outlet	Code	51		KSF-10B	KSF-8B	KSF-10BP	(kg)		
3/4"×10×1"	D	96	92	226	228	287	10		
1"×10×2"	D	114	105	265	283	322	13		
1"×13×2"	E	114	105	265	283	322	14		
1.1/2"×16×2"	F	121	124	334	363	396	21		
1.1/2"×21×2.1/2"	G	121	124	334	363	396	24		
1.1/2"×26×3"	Н	121	124	334	363	396	28		
2"×33×3"	J	124	137	393	422	455	35		
3"×39×4"	K	165	156	539	612	587	67		
3"×49×4"	L	165	156	539	612	587	63		
4"×55×6"	М	184	178	648	691	761	95		
4"×60×6"	N	210	197	648	691	761	100		
4"×73×6"	Р	210	197	648	691	761	120		
6"×96×8"	Q	241	240	780	841	820	190		
6"×115×8"	R	241	240	780	841	820	210		
8"×150×10"	Т	279	276	895	957	935	280		

Notes

1) Center to face tolerance : ± 1.5 mm for valve inlet sizes up to and including 4".

±3mm for valve inlet sizes larger than 4".

2) For inlet flange rating lager than 300 LBS may be change the dimension of center to face.

VMV[®]

Standard Valve Selection Tables

					(unit:mm)	
	MATERIALS			VALVE SIZE	FLANGE RATIN	IG RAISED FACE
BODY & BONNET	SEAT & DISC	SPRING	ТҮРЕ	$\begin{array}{c} \text{INLET} \times \text{ORIFICE DIA.} \\ \times \text{OUTLET} \end{array}$	INLET	OUTLET
Ductile	Stainless Steel	Carbon Steel	KSF-8			
Casting Steel			KSF-10			
Forged Steel				15A×10×25A	10	10
				20A×10×25A	10	10
				25A×19×40A	10	10
				40A×30×65A	10	10
				50A×38×80A	10	10
				65A×49×100A	10	10
				80A×61×100A	10	10
				100A×73×150A	10	10
				125A×95×200A	10	10
				150A×115×200A	10	10
				200A×150×250A	10	10
Casting Steel	Stainless Steel	Carbon Steel	KSF-8			
Forged Steel			KSF-10			
				15A×10×25A	20, 30	10
				20A×10×25A	20, 30	10
				25A×19×40A	20, 30	10
				40A×30×65A	20, 30	10
				50A×38×80A	20, 30	10
				65A×49×100A	20, 30	10
				80A×61×100A	20, 30	10
				100A×73×150A	20, 30	10
				125A×95×200A	20, 30	10
				150A×115×200A	20, 30	10
				200A×150×250A	20, 30	10

Standard in The Firm

Standard Valve Selection Tables ASME SEC I , $V\!I\!I$, API RP520

(Orifice D Area) 0.11 in², 0.710cm²

0.785cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RATING RAISED FACE		MAXIMUM PRESS (kgf/cm ² g)		
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INLET	OUTLET	Inlet Temperature Range		
BUNNET	BONNET		XOUILEI			-28.9℃ to 232℃	315℃	
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	3/4″ D 1″ 3/4″ D 1″	150 300	150 150	16.0 40.0	13.0 19.0	
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	3/4″ D 1″ 3/4″ D 1″	150 300	150 150	13.0 19.0	5.6 16.0	

(Orifice D Area) 0.11 in², 0.710cm²

0.785cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RA	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)		
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INLET	OUTLET	Inlet Temper	Inlet Temperature Range	
BONNET			XOUTLET			-28.9℃ to 232℃	315 ℃	
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1″ D 2″ 1″ D 2″	150 300	150 150	20.0 40.0	13.0 20.0	
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1″ D 2″ 1″ D 2″	150 300	150 150	13.0 40.0	5.6 20.0	

(Orifice E Area) 0.196 in², 1.265 cm²

1.32665cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE		RESS (kgf/cm²g)
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INI ET		Inlet Temperature Range	
BONNET			XOUTLET			-28.9℃ to 232℃	315℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1″ E 2″ 1″ E 2″ 1″ E 2″	150 300 600	150 150 150	20.0 20.0 40.0	13.0 13.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1″ E 2″ 1″ E 2″ 1″ E 2″	150 300 600	150 150 150	13.0 20.0 40.0	5.6 20.0

(Orifice F Area) 0.307 in², 1.981 cm²

2.0096cm² KSM actual area

MATE	MATERIALS		VALVE SIZE		TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE		Inlet Temper	Inlet Temperature Range	
BONNET			XOUTLET			-28.9℃ to 232℃	315 ℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1.1/2" F 2" 1.1/2" F 2" 1.1/2" F 2"	150 300 600	150 150 150	20.0 20.0 40.0	13.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1.1/2" F 2" 1.1/2" F 2" 1.1/2" F 2"	150 300 600	150 150 150	13.0 20.0 40.0	5.6 20.0

(Orifice G Area) 0.503 in², 3.245cm²

3.46185cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RA	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	XORIFICE INLET		Inlet Temper	rature Range
BONNET	SPRING		XOUTLET		UUTLET	-28.9℃ to 232℃	315 ℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1.1/2" G 2.1/2" 1.1/2" G 2.1/2" 1.1/2" G 2.1/2"	150 300 600	150 150 150	20.0 20.0 40.0	13.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1.1/2" G 2.1/2" 1.1/2" G 2.1/2" 1.1/2" G 2.1/2"	150 300 600	150 150 150	13.0 20.0 40.0	5.6 20.0

(Orifice H Area) 0.785 in², 5.065cm²

5.3066ccm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INI ET		Inlet Temperature Range	
BONNET			×OUTLET			-28.9℃ to 232℃	315 ℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1.1/2" H 3" 1.1/2" H 3" 2" H 3" 2" H 3"	150 300 300 600	150 150 150 150	20.0 20.0 20.0 40.0	13.0 20.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	1.1/2" H 3" 1.1/2" H 3" 2" H 3" 2" H 3"	150 300 300 600	150 150 150 150	15.0 20.0 20.0 40.0	5.6 20.0 20.0

(Orifice J Area) 1.287 in², 8.303cm²

8.54865cm² KSM actual area

MATE	RIALS		VALVE SIZE	ASME FLANGE RA	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ		INI ET	OUTLET	Inlet Temperature Range	
BONNET						-28.9℃ to 232℃	315 ℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	2″ J 3″ 2″ J 3″ 2.1/2″ J 4″ 2.1/2″ J 4″	150 300 300 600	150 150 150 150	20.0 20.0 20.0 40.0	13.0 20.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	2″ J 3″ 2″ J 3″ 2.1/2″ J 4″ 2.1/2″ J 4″	150 300 300 600	150 150 150 150	13.0 20.0 20.0 40.0	5.6 20.0 20.0

(Orifice K Area) 1.838 in², 11.858cm²

11.93985cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE	MAXIMUM PI	RESS (kgf/cm²g)
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE		Inlet Temperature Range		
BONNET			XOUTLET		COTLET	-28.9℃ to 232℃	315℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	3" K 4" 3" K 4" 3" K 4"	150 300 600	150 150 150	20.0 20.0 40.0	13.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	3″ K 4″ 3″ K 4″ 3″ K 4″	150 300 600	150 150 150	13.0 20.0 40.0	5.6 13.0

(Orifice L Area) 2.853 in², 18.406cm²

18.84785cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE		RESS (kgf/cm²g)
BODY &	SPRING	ТҮРЕ		INI ET		Inlet Temperature Range	
BONNET						-28.9℃ to 232℃	315℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	3" L 4" 3" L 4" 4" L 6" 4" L 6"	150 300 300 600	150 150 150 150	20.0 20.0 20.0 40.0	13.0 20.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	3″ L 4″ 3″ L 4″ 4″ L 6″ 4″ L 6″	150 300 300 600	150 150 150 150	13.0 20.0 20.0 40.0	5.6 13.0 13.0

Standard Valve Selection Tables ASME SEC I , $V\!I\!I\!I$, API RP520

(Orifice M Area) 3.60 in², 23.226cm²

23.74625cm² KSM actual area

MATERIALS		VALVE SIZE		ASME FLANGE RA	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INI ET		Inlet Temperature Range	
BONNET	SPRING		×OUTLET			-28.9℃ to 232℃	315℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	4″ M 6″ 4″ M 6″ 4″ M 6″	150 300 600	150 150 150	20.0 20.0 40.0	13.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	4″ M 6″ 4″ M 6″ 4″ M 6″	150 300 600	150 150 150	13.0 20.0 40.0	5.6 13.0

(Orifice N Area) 4.34 in², 28.0cm²

28.26cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RA	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE		Inlet Temperature Range		
BONNET			XOUTLET			-28.9℃ to 232℃	315 ℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	4" N 6" 4" N 6" 4" N 6"	150 300 600	150 150 150	20.0 20.0 40.0	13.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	4" N 6" 4" N 6" 4" N 6"	150 300 600	150 150 150	13.0 20.0 40.0	5.6 13.0

(Orifice P Area) 6.38 in², 41.161 cm²

41.83265cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)	
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE			Inlet Temperature Range	
BONNET			×OUTLET			-28.9℃ to 232℃	315 ℃
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	4" P 6" 4" P 6" 4" P 6"	150 300 600	150 150 150	20.0 20.0 40.0	13.0 20.0
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	4" P 6" 4" P 6" 4" P 6"	150 300 600	150 150 150	13.0 20.0 40.0	5.6 13.0

(Orifice Q Area) 11.05in², 71.29cm²

72.3456cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)			
BODY & BONNET	SPRING	ТҮРЕ	INLET×ORIFICE	INI ET		Inlet Temperature Range			
			XOUTLET			-28.9℃ to 232℃	315 ℃		
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	6″ Q 8″ 6″ Q 8″ 6″ Q 8″	150 300 600	150 150 150	11.6 20.0 40.0	11.6 20.0		
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	6″ Q 8″ 6″ Q 8″ 6″ Q 8″	150 300 600	150 150 150	11.6 20.0 40.0	5.6 11.6		

(Orifice R Area) 16.0in², 103.226cm²

103.81625cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RAT	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)			
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INLET		Inlet Temperature Range			
BONNET	SFRING		×OUTLET			-28.9℃ to 232℃	315 ℃		
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	6" R 8" 6" R 8" 6" R 8"	150 300 600	150 150 150	7.0 16.2 20.0	7.0 16.2		
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	6" R 8" 6" R 8" 6" R 8"	150 300 600	150 150 150	7.0 16.2 20.0	5.6 11.6		

(Orifice T Area) 26.0in², 167.742cm²

176.625cm² KSM actual area

MATERIALS			VALVE SIZE	ASME FLANGE RA	TING RAISED FACE	MAXIMUM PRESS (kgf/cm ² g)			
BODY &	SPRING	ТҮРЕ	INLET×ORIFICE	INLET	OUTLET	Inlet Temperature Range			
BONNET			XOUTLET			-28.9℃ to 232℃	315℃		
Carbon Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	8″ T 10″ 8″ T 10″	150 300	150 150	4.6 16.2	4.6 13.0		
Stainless Steel	Carbon Steel Stainless Steel	KSF-8 KSF-10	8″T 10″ 8″T 10″	150 300	150 150	4.6 16.2	4.6 11.6		

Calculation Of Safety Valve Capacity

Code : KS B 6126 or KOSHA for STEAM

W = $5.246 \times C \times Kd \times A \times (P + 0.1) \times 0.9$, See Table 1(page 32)

Nomenclature

W	Capacity of Steam, kg/h
А	Nozzle orifice area, mm ²
	For set pressure \leq 0.1 MPag
	P = set pressure + 0.02 MPag
Р	
	For set pressure > 0.1 MPag
	$P = set pressure \times 1.03$
Kd	Coefficient of discharge, 0.864 (Full lift type)
C	Superheat correction factor
C	See Table 2 (page 34)

Code : ASME Section [. for STEAM

For P \leq 110kgf/cm ² abs	$W=51.5 \times K \times A \times P \times 0.9 \times Ksh$
For $P > 110 kaf/cm^2 abc$	$W = 51.5 \times K \times A \times P \times 0.0 \times K ch \times (2.7109P-1000)$
TOFF > TTORY/CITTADS	(3.2599P-1061)

Code : ASME Section VII. for STEAM

For P1	\leq 117kgf/cm ² abs	W=51.5 \times Kd \times A \times P	$1 \times Ksh$	
For P1	> 117kgf/cm ² abs	W=51.5×Kd×A×P	$1 \times Ksh \times$	(2.7109P1-1000) (3.2599P1-1061)
Nome	nclature			(3.23331 1-1001)
W	Weight of Steam (kg/h)			
K	Coefficient of discharge =	0.975		
Kd	Coefficient of discharge =	0.878		
٨	Namela aufora auro			

А	Nozzle orfice area						
Р	(1.03×Set Pressure) + 1.033 (kgf/cm ² abs)						
P1	(1.10×Set Pressure) + 1.033 (kgf/cm ² abs)						
Kch	Superheat Correction factor						
1/211	See Table 3 (page 35, 36)						

Safety Valve Capacity Table

Full Lift Type, for Sat. Steam

[Table	Table1] (unitkg/h)																			
S	ZE	15A	20A		25A		32A		40A			50A		65A	8	DA	100A	125A	150A	200A
Orifice	Dia.(mm)	10	10	10	13	19	24	16	21	30	26	33	38	49	49	61	73	95	115	150
0.5	0.049	54.1	54.1	54.1	91.4	195	311	138	238	487	365	589	781	1299	1299	2013	2883	4884	7157	12176
0.7	0.069	60.5	60.5	60.5	102	218	348	154	266	544	409	659	873	1453	1453	2252	3225	5462	8004	13617
1.5	0.098	80.5	80.5	80.5	136	252	402	206	307	724	544	876	1162	1932	1932	2597	4290	7265	9232	18114
2	0.196	96.6	96.6	96.6	163	348	556	247	426	870	653	1052	1395	2321	2321	3597	5151	8724	12784	21750
2.5	0.245	112	112	112	190	407	649	288	497	1015	762	1228	1629	2709	2709	4198	6012	10182	14921	25386
3	0.294	128	128	128	217	465	742 836	330	568 640	1160	8/1 981	1404	2096	3097	3097	4799	68/4 7735	11641	1/059	29023
4	0.392	161	161	161	272	582	929	412	711	1451	1090	1756	2329	3873	3873	6002	8596	14558	21334	36296
4.5	0.441	177	177	177	299	640	1022	454	782	1597	1199	1932	2562	4261	4261	6603	9457	16017	23471	39932
5	0.49	209	209	209	327	699	1115	495	853 925	1742	1309	2108	2796	4649	4649	7205	10319	17475	25608	43568
6	0.588	225	205	225	381	815	1301	578	996	2033	1527	2460	3262	5425	5425	8408	12041	20393	29883	50841
6.5	0.637	242	242	242	409	874	1394	619	1067	2179	1636	2636	3496	5813	5813	9009	12902	21851	32020	54478
7	0.686	258	258	258	436	932	1487	661	1139	2324	1746	2812	3729	6201	6201	9610	13764	23310	34158	58114
8	0.784	290	290	290	403	1049	1673	743	1210	2615	1964	3164	4196	6977	6977	10212	15486	26227	38433	65387
8.5	0.833	306	306	306	518	1107	1767	785	1352	2760	2073	3340	4429	7365	7365	11414	16347	27686	40570	69023
9	0.882	322	322	322	545	1165	1860	826	1424	2906	2183	3516	4663	7753	7753	12016	17209	29144	42707	72659
9.9	0.97	351	351	351	594	1224	2027	901	1552	3167	2379	3832	5082	8450	8450	13096	18755	31764	46546	79190
10	0.98	355	355	355	600	1282	2046	909	1566	3197	2401	3868	5129	8529	8529	13219	18931	32061	46982	79932
10.3	1.009	364	364	364	616	1317	2101	933	1608	3283	2466	3972	5268	8759	8759	13575	19441	32925	48247	82084
10.5	1.029	387	387	387	655	1399	2139	950	1709	3488	2620	4044	5596	9305	9305	14421	20654	34979	51257	87205
11.5	1.127	403	403	403	682	1457	2325	1033	1780	3633	2729	4396	5830	9693	9693	15023	21515	36437	53394	90841
12	1.176	419	419	419	709	1515	2418	1074	1851	3779	2838	4572	6063	10081	10081	15624	22376	37896	55532	94478
12.5	1.225	430	430	430	730	1632	2511	1157	1923	4070	3057	4748	6530	10469	10469	16225	23237	40813	59807	101751
13.5	1.323	468	468	468	791	1690	2697	1199	2065	4215	3166	5100	6763	11246	11246	17428	24960	42272	61944	105387
14	1.372	484	484	484	818	1749	2791	1240	2136	4360	3275	5276	6996	11634	11634	18030	25821	43730	64081	109023
14.5	1.421	516	516	500	873	1807	2884	1323	2208	4506	3384	5452	7463	12022	12022	19232	20082	45189	68356	112000
15.5	1.519	533	533	533	900	1924	3070	1364	2350	4797	3603	5804	7697	12798	12798	19834	28405	48106	70493	119933
15.7	1.539	539	539	539	911	1948	3108	1381	2379	4856	3647	5876	7792	12956	12956	20079	28757	48701	71366	121417
16 5	1.568	549	549	549	928	2040	3163	1405	2421	4942 5088	3/12	6156	7930 8163	13186	13186	20435	30127	49565	72631	123569
17	1.666	581	581	581	982	2099	3349	1488	2564	5233	3931	6332	8397	13962	13962	21638	30989	52482	76906	130842
17.5	1.715	597	597	597	1010	2157	3442	1530	2635	5379	4040	6508	8630	14350	14350	22239	31850	53940	79043	134478
18 5	1.764	630	630	630	1037	2215	3628	1612	2707	5670	4149	6860	9097	14738	14738	22841	32711	56858	83318	138114
19	1.862	646	646	646	1092	2332	3721	1654	2849	5815	4368	7036	9330	15514	15514	24043	34434	58316	85455	145387
19.5	1.911	662	662	662	1119	2391	3815	1695	2920	5960	4477	7212	9564	15902	15902	24645	35295	59775	87593	149024
20	2 009	694	694	694	1146	2449	3908 4001	1736	3063	6251	4586	7388	9/9/	16290	16290	25246	36156	62692	91867	152660
21	2.058	710	710	710	1201	2566	4094	1819	3134	6397	4805	7740	10264	17066	17066	26449	37879	64151	94005	159933
21.5	2.107	726	726	726	1228	2624	4187	1861	3205	6542	4914	7916	10497	17454	17454	27050	38740	65609	96142	163569
22.5	2.156	743	743	743	1255	2002	4200	1902	3348	6833	5132	8268	10750	1/042	18230	28253	40463	68526	100417	170842
23	2.254	775	775	775	1310	2799	4466	1985	3419	6979	5242	8444	11197	18618	18618	28854	41324	69985	102554	174478
23.5	2.303	791	791	791	1337	2857	4559	2026	3491	7124	5351	8620	11431	19006	19006	29456	42185	71443	104692	178115
24	2.352	807	807	807	1365	2916	4652	2067	3562	7270	5460	8/96	11664	19394	19394	30057	43046	72902	106829	181751
25	2.45	840	840	840	1419	3032	4839	2150	3704	7560	5679	9148	12131	20170	20170	31260	44769	75819	111104	189024
25.3	2.479	849	849	849	1435	3067	4894	2175	3747	7647	5743	9252	12269	20400	20400	31616	45279	76683	112369	191176
20.5	2.499	800	872	872	1447	3091	4932	2192	3776	7851	5/88	9324	12364	20559	20559	31861	45630	78736	115379	192660
26.5	2.597	888	888	888	1501	3207	5118	2274	3918	7997	6006	9676	12831	21335	21335	33064	47353	80195	117516	199933
27	2.646	904	904	904	1529	3266	5211	2316	3989	8142	6116	9852	13064	21723	21723	33665	48214	81654	119653	203569
27.5	2.095	920	920	920	1583	3324	5304 5397	2357	4061	8433	6334	10028	13298	22111	22111	34267	49075	84571	123928	207206
28.5	2.793	953	953	953	1610	3441	5490	2440	4203	8579	6443	10380	13764	22887	22887	35470	50798	86029	126066	214479
29	2.842	969	969	969	1638	3499	5583	2481	4275	8724	6553	10556	13998	23275	23275	36071	51659	87488	128203	218115
29.5	2.891	985	985	985	1665	3557	5769	2523	4346	9015	6771	10/32	14231	23663	23663	30672	52520	88947 90405	130340	221/51
30.5	2.989	1017	1017	1017	1720	3674	5863	2605	4488	9160	6880	11084	14698	24439	24439	37875	54243	91864	134615	229024
kgf/cm ² g	MPag																			
Pre	soure																			

Calculation Of Safety Valve Capacity

Code : KS B 6126 or KOSHA for AIR & GAS

W =
$$\frac{C \times Kd \times A \times P1 \times (M)^{1/2} \times 0.9}{(Z \times T)^{1/2}}$$

Nomenclature

W	Capacity of Air, kg/h
А	Nozzle orifice area, m ² A = $\frac{\pi \times D^2}{4}$ D : Orifice Diameter mm
P1	Upstream relieving pressure absolute, MPa
Μ	Molecular weight. Air = 28.96

Т	Absolute temperature of gas, K
С	Coefficient determined by ratio of the specific heats
	of the gas
Kd	Coefficient of discharge, 0.864 (Full lift type)
Z	Compressibility factor

																				(unit:kg/h
S	ZE	15A	20A		25A		32A		40A			50A		65A	8	0A	100A	125A	150A	200A
Orifice		10	10	10	13	19	24	16	21	30	26	33	38	49	49	61	73	95	115	150
onnee		00	00	00	105	000	400	005	050	700	540	074	4450	4007	4007	0000	1077	70.40	10044	10050
0.5	0.049	80	80	80	135	289	462	205	353	122	542	8/4	1158	1927	1927	2986	4277	7243	10614	18058
0.7	0.069	91	91	91	154	330	527	234	404	824	619	998	1323	2200	2200	3410	4884	8272	12122	20623
1	0.098	108	108	108	182	390	623	2/6	4//	973	/31	11/8	1562	2597	2597	4025	5/65	9764	14308	24342
1.5	0.147	136	136	136	230	491	/84	348	600	1225	920	1482	1965	3268	3268	5064	7253	12284	18001	30626
2	0.196	164	164	164	2//	592	944	419	723	14/6	1108	1786	2368	3938	3938	6104	8742	14805	21695	36910
2.5	0.245	191	191	191	324	693	1105	491	846	1727	1297	2090	2772	4609	4609	7143	10230	17325	25388	43194
3	0.294	219	219	219	371	793	1266	562	969	1979	1486	2394	3175	5279	5279	8182	11718	19846	29082	49478
3.5	0.343	247	247	247	418	894	1427	634	1092	2230	1675	2698	3578	5950	5950	9221	13206	22366	32775	55761
4	0.392	275	275	275	466	995	1588	705	1216	2481	1864	3003	3981	6620	6620	10260	14695	24887	36469	62045
4.5	0.441	303	303	303	513	1096	1749	777	1339	2733	2052	3307	4385	7291	7291	11300	16183	27407	40162	68329
5	0.49	331	331	331	560	1197	1910	848	1462	2984	2241	3611	4788	7962	7962	12339	17671	29928	43856	74613
5.5	0.539	359	359	359	607	1297	2070	920	1585	3235	2430	3915	5191	8632	8632	13378	19160	32448	47549	80897
6	0.588	387	387	387	654	1398	2231	991	1708	3487	2619	4219	5595	9303	9303	14417	20648	34969	51243	87181
6.5	0.637	415	415	415	702	1499	2392	1063	1831	3738	2808	4523	5998	9973	9973	15457	22136	37489	54936	93465
7	0.686	443	443	443	749	1600	2553	1134	1955	3989	2996	4827	6401	10644	10644	16496	23624	40010	58630	99748
7.5	0.735	471	471	471	796	1701	2714	1206	2078	4241	3185	5131	6804	11314	11314	17535	25113	42530	62323	106032
8	0.784	499	499	499	843	1802	2875	1277	2201	4492	3374	5436	7208	11985	11985	18574	26601	45051	66017	112316
8.5	0.833	527	527	527	890	1902	3036	1349	2324	4744	3563	5740	7611	12655	12655	19613	28089	47571	69710	118600
9	0.882	555	555	555	938	2003	3197	1420	2447	4995	3752	6044	8014	13326	13326	20653	29578	50092	73404	124884
9.5	0.931	582	582	582	985	2104	3357	1492	2570	5246	3940	6348	8418	13997	13997	21692	31066	52613	77097	131168
9.9	0.97	605	605	605	1022	2184	3485	1549	2668	5446	4091	6590	8739	14530	14530	22519	32251	54619	80037	136169
10	0.98	610	610	610	1032	2205	3518	1563	2694	5498	4129	6652	8821	14667	14667	22731	32554	55133	80791	137452
10.3	1,009	627	627	627	1060	2265	3613	1606	2766	5646	4241	6832	9060	15064	15064	23346	33435	56625	82977	141171
10.5	1.000	638	638	638	1079	2306	3679	1635	2817	5749	4318	6956	9224	15338	15338	23770	34043	57654	84484	143735
11	1.020	666	666	666	1126	2/06	38/0	1706	20/10	6000	4507	7260	0627	16008	16008	2/18/09	35531	6017/	88178	150010
11.5	1.070	60/	604	60/	117/	2507	1001	1779	2063	6252	4606	7565	10021	16670	16670	259/0	37010	62605	01971	156303
12	1.127	722	722	722	1221	2608	4001	18/0	3186	6503	4030	7860	10/3/	173/0	173/0	26888	38507	65215	05565	162597
12 5	1.170	750	750	750	1221	2000	4102	1043	2200	6754	F072	0172	10434	10000	10000	20000	20006	67726	00050	160071
12.5	1.225	778	779	778	1200	2810	4323	1002	3/33	7006	5262	8477	112/1	18601	19601	28066	41484	70256	102052	175155
12.5	1.2/4	006	006	006	1262	2010	4403	2064	2550	7000	5/51	0701	11644	10051	10031	20300	41404	70230	102332	101/20
13.0	1.323	000	000	000	1410	2011	4044	2004	2670	7500	5640	0/01	12044	20022	20022	21045	42972	75207	1100040	101439
14	1.372	004	004	004	1410	0110	4000	2133	3079	7300	5000	9000	12047	20032	20032	31043	44401	77040	110339	10//22
14.0	1.421	002	002	002	1407	3112	4900	2207	300Z	1/00	0020	9309	12400	20/02	20/02	32004	40949	1/010	114032	194000
10	1.47	090	090	090	1504	3213	5127	22/0	3925	0011	0017	9094	12004	213/3	213/3	33123	4/43/	00330	11//20	200290
10.0	1.519	910	910	910	1001	3314	5250	2330	4040	0202	0200	9990	13237	22043	22043	34102	40920	02009	121419	2003/4
15.7	1.539	929	929	929	1570	3300	5353	23/9	4099	0000	0203	10122	13422	22317	22317	34307	49533	03000	122921	209139
10	1.568	946	946	940	1598	3415	5449	2421	4172	8514	6395	10302	13000	22/14	22/14	35202	50414	85379	125113	212858
10.0	1.017	9/3	9/3	9/3	1040	3010	5010	2493	4295	0/00	0004	10000	14004	23304	23304	30241	51902	0/900	120000	219142
1/	1.666	1001	1001	1001	1693	3010	5//0	2564	4418	9017	6/72	10910	14407	24055	24055	37280	53390	90420	132500	225426
17.5	1./15	1029	1029	1029	1/40	3/1/	5931	2636	4541	9268	6961	11214	14870	24/26	24/26	38319	548/9	92941	136193	231/10
18	1.764	1057	1057	1057	1/8/	3818	6092	2/0/	4004	9519	7150	11518	15273	25396	25396	39358	56367	95461	139887	237993
18.5	1.813	1085	1085	1085	1834	3919	6253	2//9	4/8/	9//1	7339	11823	15677	26067	26067	40398	5/855	97982	143581	244277
19	1.862	1113	1113	1113	1881	4020	6414	2850	4911	10022	/52/	12127	16080	26/3/	26/3/	41437	59344	100503	14/2/4	250561
19.5	1.911	1141	1141	1141	1929	4120	6575	2922	5034	102/3	7/16	12431	16483	27408	27408	424/6	60832	103023	150968	256845
20	1.96	1169	1169	1169	1976	4221	6/36	2993	5157	10525	/905	12/35	16887	28078	28078	43515	62320	105544	154661	263129
20.5	2.009	1197	1197	1197	2023	4322	6896	3065	5280	10776	8094	13039	17290	28/49	28749	44554	63809	108064	158355	269413
21	2.058	1225	1225	1225	2070	4423	7057	3136	5403	11027	8283	13343	17693	29419	29419	45594	65297	110585	162048	2/569/
21.5	2.107	1253	1253	1253	2117	4524	7218	3208	5526	112/9	84/1	13647	18096	30090	30090	46633	66785	113105	165/42	281980
22	2.156	1281	1281	1281	2165	4625	7379	3279	5649	11530	8660	13952	18500	30761	30761	4/672	68273	115626	169435	288264
22.5	2.205	1309	1309	1309	2212	4725	7540	3351	5773	11781	8849	14256	18903	31431	31431	48711	69762	118146	173129	294548
23	2.254	1337	1337	1337	2259	4826	7701	3422	5896	12033	9038	14560	19306	32102	32102	49751	71250	120667	176822	300832
23.5	2.303	1364	1364	1364	2306	4927	7862	3494	6019	12284	9227	14864	19710	32772	32772	50790	72738	123187	180516	307116
24	2.352	1392	1392	1392	2353	5028	8023	3565	6142	12536	9415	15168	20113	33443	33443	51829	74227	125708	184209	313400
24.5	2.401	1420	1420	1420	2401	5129	8183	3637	6265	12787	9604	15472	20516	34113	34113	52868	75715	128228	187903	319684
25	2.45	1448	1448	1448	2448	5229	8344	3708	6388	13038	9793	15776	20919	34784	34784	53907	77203	130749	191596	325967
25.3	2.479	1465	1465	1465	2476	5289	8439	3751	6461	13187	9905	15956	21158	35181	35181	54522	78084	132241	193782	329686
25.5	2.499	1476	1476	1476	2495	5330	8505	3780	6512	13290	9982	16080	21323	35454	35454	54947	78691	133269	195290	332251
26	2.548	1504	1504	1504	2542	5431	8666	3851	6635	13541	10171	16385	21726	36125	36125	55986	80180	135790	198983	338535
26.5	2.597	1532	1532	1532	2589	5532	8827	3923	6758	13792	10359	16689	22129	36796	36796	57025	81668	138310	202677	344819
27	2.646	1560	1560	1560	2637	5633	8988	3994	6881	14044	10548	16993	22533	37466	37466	58064	83156	140831	206370	351103
27.5	2.695	1588	1588	1588	2684	5734	9149	4066	7004	14295	10737	17297	22936	38137	38137	59103	84645	143351	210064	357387
28	2.744	1616	1616	1616	2731	5834	9309	4137	7127	14546	10926	17601	23339	38807	38807	60143	86133	145872	213757	363671
28.5	2.793	1644	1644	1644	2778	5935	9470	4209	7251	14798	11115	17905	23742	39478	39478	61182	87621	148393	217451	369954
29	2.842	1672	1672	1672	2825	6036	9631	4280	7374	15049	11303	18209	24146	40148	40148	62221	89110	150913	221144	376238
29.5	2.891	1700	1700	1700	2873	6137	9792	4352	7497	15300	11492	18514	24549	40819	40819	63260	90598	153434	224838	382522
30	2.94	1728	1728	1728	2920	6238	9953	4423	7620	15552	11681	18818	24952	41489	41489	64299	92086	155954	228531	388806
30.5	2,989	1755	1755	1755	2967	6339	10114	4495	7743	15803	11870	19122	25356	42160	42160	65339	93574	158475	232225	395090
	2.000																			

kgf/cm²g MPag Pressure

Superheat Correction Factors For Safety Valves

	700				0.679	0.680	0.681	0.682	0.683	0.684	0.685	0.686	0.688	0.691	0.693	0.697	0.700	0.702	0.705	0.708	0.710	0.715	0.714	0.718	0.723	0.726	0.725	0.729	0.731	0.738
	680				0.687	0.688	0.689	0.690	0.691	0.692	0.693	0.695	0.697	0.699	0.704	0.707	0.710	0.713	0.716	0.719	0.720	0.724	0.729	0.729	0.734	0.739	0.742	0.745	0.748	0.753
	660				0.695	0.696	0.697	0.698	0.702	0.701	0.702	0.703	0.706	0.711	0.714	0.717	0.720	0.724	0.727	0.731	0.735	0.735	0.742	0.746	0.750	0.750	0.754	0.758	0.762	0.766
	640				0.703	0.705	0.708	0.710	0.708	0.710	0.711	0.712	0.718	0.721	0.725	0.728	0.732	0.736	0.740	0.741	0.747	0.753	0.735	0.757	0.761	0.765	0.769	0.774	0.779	0.785
	620				0,712	0.715	0.717	0.719	0,721	0.719	0.722	0.724	0.728	0.732	0.736	0,740	0.744	0.749	0.752	0.756	0.762	0.763	0.770	0.775	0.780	0.785	0,790	0.792	0.800	0.805
	600				0.721	0.725	0.723	0.729	0.731	0.731	0.733	0.735	0.739	0.743	0.748	0.752	0.757	0.761	0.766	0.772	0.776	0.781	0.787	0.792	0.798	0.804	0.807	0.815	0.821	0.828
	580				0.730	0.735	0.737	0.739	0.739	0.741	0.743	0.745	0.750	0.755	0.760	0.766	0.770	0.777	0.783	0.786	0.793	0.799	0.805	0.812	0.818	0.823	0.832	0.839	0.846	0.854
	560				0.742	0.744	0.747	0.747	0.749	0.752	0.754	0.757	0.762	0.768	0.774	0.779	0.786	0.793	0.797	0.804	0.811	0.821	0.824	0.835	0.842	0.850	0.858	0.868	0.876	0.888
	540				0.748	0.755	0.755	0.758	0.761	0.763	0.766	0.769	0.775	0.782	0.787	0.794	0.801	0.808	0.815	0.825	0.834	0.838	0.849	0.859	0.869	0.878	0.888	0.901	0.914	0.924
	520				0.763	0.763	0.766	0.769	0.772	0.776	0.779	0.782	0.789	0.797	0.803	0.810	0.818	0.827	0.837	0.848	0.853	0.867	0.877	0.888	0.899	0.913	0.927	0.944	0.954	0.971
	500		0.768	0.770	0.774	0.775	0.778	0.781	0.785	0.789	0.792	0.796	0.805	0.811	0.819	0.828	0.835	0.849	0.861	0.871	0.883	0.895	0.908	0.823	0.941	0.956	0.972	0.995	1.012	1.035
	480		0.780	0.782	0.783	0.787	0.790	0.794	0.798	0.802	0.807	0.811	0.818	0.828	0.838	0.848	0.861	0.872	0.885	0.899	0.913	0.931	0.952	0.968	0.989	1.016	1.037	1.064	1.092	1.122
re °c	460		0.792	0.793	0.795	0.799	0.803	0.808	0.812	0.817	0.822	0.827	0.838	0.846	0.858	0.873	0.885	0.900	0.915	0.935	0.956	0.977	1,009	1.032	1.063	1.098	1,137			
eratu	440		0.804	0.806	0.808	0.813	0.817	0.822	0.827	0.833	0.838	0.844	0.857	0.868	0.883	0.895	0.914	0.932	0.958	0.982	1.013	1.047	1.089	1.136	1,191					
emp	420		0.817	0.819	0.822	0.826	0.832	0.838	0.844	0.850	0.856	0.863	0.876	0.893	0.907	0.929	0.953	0.982	1.016	1.055	1.096	1.132	1.169							
	400	0.822 0.825 0.828	0.830	0.833	0.836	0.841	0.848	0.854	0.861	0.868	0.876	0.883	0.903	0.920	0.942	0.972	1.006	1.033	1.059	1.099	1.167									
	380	0.835 0.838 0.841	0.845	0.848	0.851	0.857	0.865	0.872	0.881	0.888	0.897	0.909	0.926	0.956	0.988	1.004	1.028	1.072												
	360	0.849 0.853 0.856	0.860	0.863	0.867	0.875	0.884	0.891	0.901	0.912	0.926	0.936	0.964	0.980	1.000	1.038			_											
	340	0.864 0.868 0.872	0.876	0.880	0.885	0.894	0.904	0.911	0.924	0.934	0.957	0.961	0.975	1.002																
	320	0.879 0.884 0.888	0.893	0.898	0.903	0.915	0.927	0.941	0.954	0.956	0.962	0.971																		
	300	0.896 0.901 0.906	0.912	0.918	0.924	0.934	0.953	0.953	0.958	0.967																				
	280	0.913 0.919 0.925	0.932	0.937	0.949	0.954	0.955	0.962																						
	260	0.931 0.938 0.947	0.955	0.961	0.957	0.958																								
	240	0.951 0.960 0.972	0.964	0.961	0.962																									
	220	0.972 0.983 0.970	0.967																											
	200	0.996 0.981 0.976	0.00	_																										
	Saturation Temperature	1.005 0.987 0.977	0.972	0.969	0.967	0.965	0.966	0.968	0.971	0.975	0.980	0.986	0.999	1.016	1.036	1.063	1.094	1,129												
(ətulo:	Pressure(aba) Pressure(aba)	5(0.5) 10(1.0) 15(1.5)	20(2.0)	25(2.5)	30(3.0)	40(4.0)	50(5.0)	60(6.0)	70(7.0)	80(8.0)	0(0'0)	100(10.0)	120(12.0)	140(14.0)	160(16.0)	180(18.0)	200(20.0)	220(22,0)	240(24.0)	260(26.0)	280(28.0)	300(30.0)	320(32.0)	340(34.0)	360(36.0)	380(38.0)	400(40.0)	420(42.0)	440(44.0)	460(46.0)

Safety Valve Capacity Table for steam [Table2]

Superheat Correction Factors For Safety Valves [Table3]

Pressure	Saturation Temperature											Inle	t ten	npera	ature	(°C)										
(bar absolute)	(°C)	150	160	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390
2 3 4 5 6 7 8 9 10 11 2 3 4 15 16 7 8 9 00 11 2 2 3 4 6 8 3 2 4 2 8 3 2 4 6 8 3 2 4 6 8 3 2 4 2 8 3 2 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 5 2 4 6 8 6 6 6 8 7 7 5 8 9 5 0 10 5 10 11 12 2 12 2 3 4 6 8 3 2 4 4 6 8 3 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 6 8 8 0 2 4 12 2 3 2 4 6 8 8 0 2 4 4 6 8 8 0 2 4 4 4 8 8 0 2 4 4 8 8 0 2 4 4 8 8 0 2 4 4 8 8 0 2 4 4 8 8 0 2 4 4 8 8 0 2 4 4 8 8 0 2 4 4 8 8 0 2 4 4 11 15 0 5 2 4 11 15 0 5 2 4 11 15 0 5 10 15 10 15 10 15 10 15 10 15 10 1 1 1 1	$\begin{array}{c} 120\\ 133\\ 144\\ 152\\ 159\\ 165\\ 175\\ 180\\ 188\\ 192\\ 204\\ 201\\ 212\\ 215\\ 222\\ 220\\ 234\\ 241\\ 247\\ 253\\ 256\\ 266\\ 273\\ 276\\ 282\\ 284\\ 280\\ 295\\ 266\\ 273\\ 276\\ 282\\ 284\\ 280\\ 295\\ 307\\ 311\\ 318\\ 321\\ 333\\ 339\\ 342\\ 347\\ 351\\ 333\\ 339\\ 342\\ 357\\ 359\\ 361\\ 366\\ 368\\ 370\\ 351\\ 359\\ 361\\ 366\\ 368\\ 370\\ 374\\ \end{array}$				1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00	0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99	0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99	0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99	0.95500.99500.99600.997700.997700.99800.99900.009600.9977700.998800.99800.99900.00911.000	0.94 0.94 0.94 0.95 0.955 0.955 0.955 0.960 0.960 0.960 0.960 0.977 0.977 0.977 0.997 1.000	0.933 0.933 0.934 0.944 0.944 0.945 0.955 0.955 0.956 0.9595 0.9595 0.959 0.9595 0.959 0.9595 0.959 0.9595 0.959 0.9595 0.959 0.959 0.95950 0.95950 0.95950000000000	0.9200.93330.0944	091 0091 0092 0092 0092 0092 0093 0093 0093 0093	0.900 0.901 0.922 0.9222 0.02200 0.02200 0.02200 0.02200 0.02200000000	0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90	99989999990000000000000000000000000000	0.888 0.888 0.0888 0.0888 0.0888 0.0888 0.0888 0.0888 0.0888 0.0888 0.0888 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0889 0.0899 0.0990 0.0991 0.0992 0.0992 0.0993 0.0993 0.0994 0.0995 0.0995 0.0995 0.0995 0.0997 0.0995 0.09555 0.09555 0.09555 0.095555 0.095555555555	0.08777778888888888888888999900000000000	0.866 0.867 0.878 0.888 0.888 0.888 0.888 0.888 0.888 0.888 0.888 0.990 0.990 0.991 0.991 0.991 0.992 0.994 0.995 0.997 0.998 0.997	00000000000000000000000000000000000000	$\begin{array}{l} 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.856\\ 0.866\\ 0.866\\ 0.866\\ 0.866\\ 0.866\\ 0.867\\ 0.877\\ 0.877\\ 0.888\\ 0.888\\ 0.889\\ 0.990\\ 0.990\\ 0.991\\ 0.992\\ 0.994\\ 0.995\\ 0.996\\ 0.997\\ 0.996\\ 0.996\\ 0.997\\ 0.996\\ 0.997\\ 0.996\\ 0.996\\ 0.997\\ 0.996\\ 0.996\\ 0.996\\ 0.996\\ 0.996\\ 0.996\\ 0.996\\ 0.996\\ 0.996\\ 0.997\\ 0.996\\ 0.$	0.84444855558555555556666666666778777788888889999000000000000	0.8444000000000000000000000000000000000	0.8333000000000000000000000000000000000

% Pressure = Set pressure + Over pressure + atmospheric pressure

1 psig = 0.06895 barg = 0.07031 kgf/cm²g 1barg = 14.5035 psig = 1.0197 kgf/cm²g

Superheat Correction Factors For Safety Valves

Superheat Correction Factors For Safety Valves [Table3]

Pressure (bar ab <u>solute)</u>	Saturation Temperature	on ture 400/410/420/430/440/450/460/470/480/490/500/510/520/530/540/550/560/570/580/590/600/610/620/630	640
Ibar absolute) 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 223 24 26 28 300 21 223 24 26 28 300 32 34 40 44 46 52 54 558 60 62 64 68 705 80 905 1005 115 120 125 130 145 <td>CO 120 133 144 152 159 165 170 175 180 184 188 195 198 201 202 212 215 217 2200 2212 215 217 220 234 237 241 244 250 251 276 280 281 266 269 2713 276 280 282 284 286 290 203 301 311 314 318 321 332 344 350</td> <td></td> <td>0 640 0 0.71 0 0.72 0.72 0.72 0.72</td>	CO 120 133 144 152 159 165 170 175 180 184 188 195 198 201 202 212 215 217 2200 2212 215 217 220 234 237 241 244 250 251 276 280 281 266 269 2713 276 280 282 284 286 290 203 301 311 314 318 321 332 344 350		0 640 0 0.71 0 0.72 0.72 0.72 0.72

% Pressure = Set pressure + Over pressure + atmospheric pressure 1 psig = 0.06895 barg = 0.07031 kgf/cm²g 1barg = 14.5035 psig = 1.0197 kgf/cm²g

Calculation of Safety Valve Capacity

For Gas or Vapor (HPGCL)

 $W = \frac{C \times Kd \times Kb \times Kc \times P_1 \times A \times \sqrt{M}}{13160 \times \sqrt{T \times Z}}$

W	Capacity of Gas or Vapor (kg/h)
	Coefficient determined form an expression of
С	the ratio of the specific heats $(k=C_p/C_v)$ of the gas or
	vapor at inlet relieving conditions.(See Table 4)
Kd	Coefficient of discharge, safety valve 0.975.
	Capacity correction factor due to back pressure.
Kb	For conventional type valve, use a valve for Kb
	equal to 1.0.
	Combination correction factor for installations with
Kc	a rupture disk upstream of the safety valve 1.0
	when a runture disk is not installed

А	Orifice area, mm ²
P 1	Upstream relieving pressure absolute, kPaa
М	Molecular weight of the gas or vapor at inlet
IVI	relieving conditions.
	Compressibility factor for the deviation of the actual
7	gas from a perfect gas, a ratio evaluated at inlet
2	reliving conditions. (If a calculated compressibility is
	not available, a Z value of 1.0 should be used.)
т	Relieving temperature of the inlet gas or vapor, K
'	(°C+273).

Specific Heat Ratio, K = Cp/Cv

TΑ	B	L	E	4
	_			

k	С	k	C	k	C	k	C
1.00	315	1.20	337	1.40	356	1.60	373
1.02	318	1.22	339	1.42	358	1.62	374
1.04	320	1.24	341	1.44	360	1.65	376
1.06	322	1.26	343	1.46	361	1.66	377
1.08	325	1.28	345	1.48	363	1.68	379
1.10	327	1.30	347	1.50	365	1.70	380
1.12	329	1.32	349	1.52	366	1.80	387
1.14	331	1.34	351	1.54	368	1.90	394
1.16	333	1.36	353	1.56	369	1.95	397
1.18	335	1.38	354	1.58	371	2.00	400

Calculation of Safety Valve Capacity

For Water (HPGCL)

$W = \frac{Kd \times Kw \times Kc \times Kv \times Kp \times A \times (1.25P-Pb)^{1/2}}{Kd \times Kv \times Kc \times Kv \times Kp \times A \times (1.25P-Pb)^{1/2}}$

11.78×(G)^{1/2}

А	Effective discharge area, mm ²
W	Flow rate, L/min.
Kd	Rated coefficient of discharge that should be obtained from the valve manufacturer
Ru	Safety valve 0.65.
	Correction factor due to back pressure.
	If back pressure is atmospheric, Kw=1.
Kuu	Balanced bellows valves in back pressure service
ĸw	will require the correction factor determined
	from Figure 5. Conventional valves require no
	special correction.
	Combination correction factor for installation with a
Ka	rupture disk upstream of the safety valve.
ĸc	Use a value for Kc equal to 1.0 when a rupture
	disk does not exist.
	Correction factor due to overpressure.
Кр	At 25% overpressure, Kp=1.0. For overpressures
	other than 25%. Kp is determined from Figure 7.

G	Specific gravity of the liquid at the flowing
U	temperature referred to water at standard conditions.
Р	Set pressure, kPag.
Pb	Total back pressure, kPag.
	Correction factor due to viscosity as determined
	from Figure 6 or from the following equation:
Kv	$= \left(0.9935 + \frac{2.878}{R^{0.5}} + \frac{342.75}{R^{1.5}}\right)^{1.0}$
	$R=\frac{85,220\times W}{U\sqrt{A}}$
R	Reynold's Number.
U	Viscosity at the flowing temperature, in Saybolt
	Universal seconds, SSU

Figure 5

Correction factor, Kw, Due to back pressure on Balanced Bellows 1.00 0.95 0.90 0.85 Kw ^{0.80} 0.75 0.70 0.65 0.60 0.55 0.50 10 20 30 40 50 Gauge Backpressure(%)= <u>backpressure (kPa(g))</u> X 100 Set pressure (kPa(g))

Figure 7

Figure 6

Specific Heat Ratios Are At Atmospheric Pressure and 60° F Unless Otherwise Noted

Table 5

	GA	S & VAPOR PH	ASE			LIQUID PHAS	E	
CHEMICAL	K*		SP.GR*	WATER=1	SP.GR@		CRITICAL	CRITICAL
MEDIOM	Cp/Cv	M	(AIR=1)	SP.GR	TEMP [°] F	B.P.*	TEMP [°] F	PRESSURE PSIA
ACETALDEHYDE	1.14	44.00	1.519	783	64	68	370	
ACETIC ACID	1.15	60.00	2.071	1.049	68	245	611	
ACETONE	-	-	-	791	66	133	455	
ACETYLENE	1.26	26.00	.898	-	-	-119	97	911
AIR	1.40	29.00	1	-	-	-313	-220	547
AMMONIA	1.31	17.00	.587	817	-110	-28	270	1683
ARGON	1.67	39.94	1.381	1.65	-387	-301	-188	
BENZENE	1.12	78.00	2.70	.879	68	176	551	700
BUTADIENE 1.3	1.12	54.00	1.922	.621	68	24	306	661
BUTANE N	1.094	58.00	2.07	.579	68	31	306	551
ISO	1.094	58.00	2.07	.557	68	11	273	529
CARBON DIOXIDE	1.29	44.00	1.53	1.101	-35	-109	88	1072
CARBON DISULFIDE	1.21	76.00	2.628	1.263	68	116	523	
CARBONE MONOXIDE	1.40	28.00	967	.814	-318	-314	-218	
CHLORINE	1.36	70.90	2.45	1.56	-29	-30	291	
CYCLOHEXANE	1.09	84.00	2.905	.779	68	177	538	593
N-DECANE	1.03	142.00	4.91	.734	60	345	655	320
DOWTHERM A	1.046	166.00	5.696	.997	212	496	_	
DOWTHERM B	-	147.00	5.074	1.181	212	352	-	
ETHANE	1.19	30.00	1.05	.546	-126	-128	90	708
ETHYL ALCOHOL	1.13	46.00	1.59	.789	68	173	469	
ETHYL CHLORIDE	1.19	64.50	2.22	.903	50	54	369	
ETHYLENE(ETHENE)	1.26	28.05	.997	.566	-152	-155	49	749
FREON 11	1 14	137.30	4 742	1 494	63	75	386	
FREON 12	1 14	120.90	4 174	1 486	-22	-21	234	
FREON 22	1 18	86 47	2 985	1 4 1 9	-42	-41	205	
FREON 114	1.09	170 92	5.90	1 538	30	38	295	
GASOLINE	-	-	-	7.5**	68	158***	-	
HELIUM	1 66	4 00	138	-	-	-452	-450	
N-HEXANE	1.06	86.00	2.97	659	68	156	454	440
HYDROGEN CHI ORIDE	1 41	36.40	1.27	-	-	-118	127	
HYDROGEN	1 4 1	2 00	070	0 709	-423	-423	-400	188
HYDROGEN SULFIDE	1.32	34 00	1 19	0.100	-	-75	213	1306
KEROSENE	-	-	-	815	60	-	-	1000
METHANE	1 31	16 00	555	415	-263	-259	-116	673
METHYL ALCOHOL	1 20	32.00	1 11	792	68	149	464	0.0
METHYL BUTANE	1.08	72.15	2.49	.625	60	82	370	476
METHYL CHLORIDE	1 20	50 49	1 742	952	32	-11	290	
NATURAL GAS	1 27	19**	656	-	-	-		
NITRIC ACID(HNO ₂)	-	-	-	1 502	60	187	-	
	1 40	30.00	1 036	1 269	-239	-240	-137	
NITROGEN	1 40	28.00	967	1 026	-422	-321	-233	
NITROUS OXIDE	1.30	44.00	1.519	1.226	-128	-131	98	
NONANE	1.04	128.00	4 43	718	68	303	613	345
N-OCTANE	1.05	114 00	3.94	707	68	258	565	362
OILS			0.01			200	000	002
FUEL BUNKER C	-	-	-	1 014	60	-	-	
FUEL NO 3	-	-	-	899	60	-	-	
FUEL NO 5 & 6	-	-	_	993	60	-	-	
LUBE	-	-	-	910	60	-	-	
MINERAL	-	-	-	910	60	-	-	
OXYGEN	1 40	32.00	1 10	1 4 2 6	-422	-297	-182	
N-PENTANE	1.10	72.00	2 49	631	60	97	386	490
PROPANE	1 13	44 00	1.55	585	-49	-44	206	617
PROPYLENE	1 15	42.00	1 476	609	-53	-54	197	667
STEAM	1.33	18.00	622	1.00	39	212	706	3206
STYRENE	1.00	104.00	3 60	906	68	293	706	0200
SULFUR DIOXIDE	1 29	64.00	2.26	1 434	32	14	315	1141
SULFURIC ACID	-	-	-	1 834	60	644***	-	
TOLUENE	1.09	92 00	3,18	.866	68	231	609	611
N-HEPTANE	1.05	100.00	3,49	.684	60	209	513	397
PHENOL	1.30	94.00	3.27		50	358	010	890
		000	0.2.					

Notes

* Values at 14.7 pounds per square inch, absolute

* *Typical value

* * * Decomposes

The valve in the above table are presented for convenience only and this Division assumes no responsibility for inaccuracies or errors resulting from use of the information.

This table is based on Fahrenheit temperature.

Calculation of Safety Valve Capacity & Relief Valve Capacity (ASME, API)

Constant back pressure only -	Orifice area calcu	llations
USA UNIT FORMULAS		METRIC UNIT FORMULAS
	GASES or VAPORS	
Gases or Vapors. (Lbs/hr) $A = \frac{W \sqrt{TZ}}{C \text{ Kd P1 } \sqrt{M \text{ Kb}}}$		Gases or Vapors. (kg/hr) $A = \frac{W \sqrt{TZ}}{C \text{ Kd P1 } \sqrt{M \text{ Kb}}}$
Gases or Vapors. (SCFM) $A = \frac{V\sqrt{TZM}}{6.32 \text{ C Kd P1 Kb}}$		Gases or Vapors. (NM ³ /hr) A = $\frac{W \sqrt{TZM}}{22.4 C \text{ Kd P1 Kb}}$
A = -or- V \sqrt{TZG} 1.175 C Kd P1 Kb		$A = \frac{V\sqrt{TZG}}{4.163 C \text{ Kd P1 Kb}}$
Air (SCFM) $A = \frac{Va \sqrt{T}}{418 \text{ Kd P1 Kb}}$	AIR	Air (NM ³ /hr) A = $\frac{Va \sqrt{T}}{1103 \text{ Kd P1 Kb}}$
$A = \frac{Ws}{51.5 \text{ Kd P1 Kb Ksh}}$	STEAM	$A = \frac{\text{(kg/hr)}}{\text{51.5 Kd P1 Kb Ksh}}$
$A = \frac{\text{Liquid} (G.P.M)}{38.0 \text{ kd kp } \sqrt{1.25P-Pb} \text{ Kv}}$	LIQUIDS	$A = \frac{V \ell \sqrt{G}}{84.0 \text{ Kd Kp } \sqrt{1.25P-Pb} \text{ Kv}}$

Variable or Constant back pressure

The Balanced Bellows valves must be used when the variation in back pressure exceeds 10% of the set pressure.

Sizing formulas of Balanced Bellows valves for gas or vapor are the same as above formulas of Conventional valves except that the factor Kb changes to Kb.

The formulas of Liquid are as follows :

LIQUIDS

-G.P.M

 $A = \frac{Vgpm \sqrt{G}}{38.0 \text{ Kd Kp } \sqrt{1.25P-Pb} \text{ Kv Kw}}$

A = <u>Vl √G</u> 84.0 Kd Kp √1.25P-Pb Kv Kw

-liter/min

		(unit:mm)
Nomenclature	USA UNIT Formulas	Metric UNIT Formulas
 A = Required orifice area W = Required flow through valve C = Coefficient determined by ratio of the specific heats of the gas of vapor. 	in² Lbs/hr	cm² kg/hr
$C = 520 \sqrt{k(\frac{2}{K+1})^{\frac{k+1}{K-1}}} (in case of Lbs, in (Runkin UNIT))$		
$C = 387 \sqrt{k(\frac{2}{K+1})^{\frac{k+1}{k-1}}} $ (in case of kg, cm) Kelvin UNIT		
of select from table 6 and 7 on page 43 K = ratio of the specific heats, Cp/Cv of the gas or vapor This value is constant for an ideal gas. if this ratio is unknown, the value k=1.001 may be used.		
a Observation Generation b 0.975 for gas, vapor, air, steam for API sizing a 0.62 for gas, vapor, air steam for ASME 90% of a 0.558 for liquids actual capacity		
V = Required flow through valve at 14.7 psia and 60° F (in USA unit) at 1.0332kgf/cm² abs and 0° C P1 = Upstream relieving pressure absolute This is the set pressure plus the allowable over pressure, plus the atmospheric	S.C.F.M. psia (set P+over P+14.7)	NM³/hr. kgf/cm²abs (set P-over P+1.033)
Kb = Constant back pressure correction factor		
$=\frac{735}{C} \sqrt{\frac{k}{k-1} (\frac{P2}{P1})^{\frac{2}{k}} - (\frac{P2}{P1})^{\frac{k}{k-1}}} \qquad (USA)$	psia	
$= \frac{548}{C} \sqrt{\frac{k}{k-1}} (\frac{P2}{P1})^{\frac{k}{1}} - (\frac{P2}{P1})^{\frac{k}{k-1}} $ (Metric UNIT)		kgf/cm²abs.
or from Fig 8 on page 42 P1 and P2=Upstream pressure and back pressure in absolute. kb=1.0 when back pressure is below 50% of abs. relieving pressure.		
 M = Molecular weight of the gas or vapor. T = Absolute temperature of the inlet. Z = Compressibility factor corresponding to P1 and T. (if this factor is not available, compressibility correction can be safely ignored by using a value of Z=1.0) 	°F+460	°C-273
 G = Specific gravity of gas(air=1.0) or specific gravity of liquid(water=1.0) Va = Required air flow through valve. Ws = Required steam flow through valve. Ksh= Super heat correction factor Ksh= 1.0 for sat. steam 	S.C.F.M. Lbs/hr	NM³/hr kgf/hr
Vgpm=Required liquid flow V l = Required liquid flow Kp = Liquid capacity correction factor due to overpressure	U.S gallons/min	liter/min
 Fig. 25% overpressure The factor for other overpressure can be obtained from Fig 10 on page 42 Kv = Viscosity correction factor from curve Fig 12 on page 42 Kv = 1.0 at normal viscosity 		
 Kw = Back pressure correction factor for liquid service from Fig 11 on page 42 Balanced bellows type only. Kb = Back pressure correction factor for gas or vapor service from Fig 9 on page 42 		
Balanced bellows type only. P = Set pressure at inlet Pb = Back pressure at outlet.	psig	kgf/cm²g

NOTE : The above curve shows that up to and including 25 percent overpressure, capacity is affected by the change in lift, the change in orifice discharge coefficient, and the change in overpressure. Above 25 percent, capacity is affected only by the change in overpressure.

Valves operating at low overpressures tend to "chatter": therefore, overpressure of less than 10 percent should be avoided.

Fig.10 Capacity Correction Factors Due to Overpressure for Relief and Safety Relief Valves in Liquid Service

Fig.9-Variable or Constant Back-Pressure Sizing Factor Kb for Balanced Bellows Safety-Relief Valves (Vapors and Gases)

Fig.11-Capacity Correction factor, Kw, Due to Back pressure on Balanced – Bellows pressure Relief valves in Liquid Service

When a relief valve is sized for viscous liquid service, it is suggested that it be sized first as for nonviscous type application in order to obtain a preliminary required discharge area, A.From manufacturers, standard orifice sizes, the next larger orifice size should be used in determining the Reynold's number, R, from either of the following relationships :

$$R = \frac{gpm(2,800G)}{u\sqrt{A}} \qquad R = \frac{12,700gpm}{U\sqrt{A}}$$

Where

gpm = flow rate at the flowing temperature, in U.S. gallons per minute. G = specific gravity of the liquid at the flowing temperature referred to water = 1.00 at 70°F.

w = absolute viscosity at the flowing temperature, in centipoises

A = effective discharge area, in square inches (from manufacturer's standard orifice areas).

U = viscosity at the flowing temperature, in Saybolt Universal seconds. After the valve of R is determined, the factor Kv is obtained from FIG.12.Factor Kv is applied to correct the "preliminary required discharge area." If the corrected area exceeds the "chosen standard orifice area" If the above calculations should be repeated using the next larger standard orifice (Per API RP520).

Calculation of Safety Valve Capacity & Relief Valve Capacity (ASME, API)

Values	of Coef	ificient	C (PER	API RF	520)	ln l	JSA UN	IT Tab			
kn	С	kn	С	kn	С	kn	С	kn	С	kn	С
0.41	219.28	0.71	276.09	1.01	316.56*	1.31	347.91	1.61	373.32	1.91	394.56
0.42	221.59	0.72	277.64	1.02	317.74	1.32	348.84	1.62	374.09	1.92	395.21
0.43	223.86	0.73	279.18	1.03	318.90	1.33	349.77	1.63	374.85	1.93	395.86
0.44	226.10	0.74	280.70	1.04	320.05	1.34	350.68	1.64	375.61	1.94	396.50
0.45	228.30	0.75	282.20	1.05	321.19	1.35	351.60	1.65	376.37	1.95	397.14
0.46	230.47	0.76	283.69	1.06	322.32	1.36	352.50	1.66	377.12	1.96	397.78
0.47	232.61	0.77	285.16	1.07	323.44	1.37	353.40	1.67	377.86	1.97	398.41
0.48	234.71	0.78	286.62	1.08	324.55	1.38	354.29	1.68	378.61	1.98	399.05
0.49	236.78	0.79	288.07	1.09	325.65	1.39	355.18	1.69	379.34	1.99	399.67
0.50	238.83	0.80	289.49	1.10	326.75	1.40	356.06	1.70	380.08	2.00	400.30
0.51	240.84	0.81	290.91	1.11	327.83	1.41	356.94	1.71	380.80	2.01	400.92
0.52	242.82	0.82	292.31	1.12	328.91	1.42	357.81	1.72	381.53	2.02	401.53
0.53	244.78	0.83	293.70	1.13	329.98	1.43	358.67	1.73	382.52	2.03	402.15
0.54	246.72	0.84	295.07	1.14	331.04	1.44	359.53	1.74	382.97	2.04	402.76
0.55	248.66	0.85	296.43	1.15	332.09	1.45	360.88	1.75	383.68	2.05	403.37
0.56	250.50	0.86	297.78	1.16	333.14	1.46	361.23	1.76	384.39	2.06	403.97
0.57	252.36	0.87	299.11	1.17	334.17	1.47	362.07	1.77	385.09	2.07	404.58
0.58	254.19	0.88	300.43	1.18	335.20	1.48	362.90	1.78	385.79	2.08	405.18
0.59	256.00	0.89	301.73	1.19	336.22	1.49	363.74	1.79	386.49	2.09	405.77
0.60	257.79	0.90	303.04	1.20	337.24	1.50	364.56	1.80	387.18	2.10	406.37
0.61	259.55	0.91	304.33	1.21	338.24	1.51	365.39	1.81	387.87	2.11	406.96
0.62	261.29	0.92	305.60	1.22	339.24	1.52	366.20	1.82	388.56	2.12	407.55
0.63	263.01	0.93	306.86	1.23	340.23	1.53	367.01	1.83	389.24	2.13	408.13
0.64	264.71	0.94	308.11	1.24	341.22	1.54	367.82	1.84	389.92	2.14	408.71
0.65	266.40	0.95	309.35	1.25	342.19	1.55	368.62	1.85	390.59	2.15	409.29
0.66	268.06	0.96	310.58	1.26	343.16	1.56	369.41	1.86	391.26	2.16	409.87
0.67	269.70	0.97	311.80	1.27	344.13	1.57	370.21	1.87	391.93	2.17	410.44
0.68	271.33	0.98	313.01	1.28	345.08	1.58	370.99	1.88	392.59	2.18	411.01
0.69	272.93	0.99	314.19*	1.29	346.03	1.59	371.77	1.89	393.25	2.19	411.58
0.70	274.52	1.00	315.38*	1.30	346.98	1.60	372.55	1.90	393.91	2.20	412.15

Interpolated values C becomes indeterminate as either n or k approachers 1.00.
 k : Ratio of specific heat. k = Cp/CV n : Isentropic expansion coefficient.
 C : Coefficient determined by the ratio of the specific heats of the gas or vapor at standard condition.

Values	s of Co	efficier	nt C			In Met	ric UNI	T Tab	e 7		
kn	С	kn	С	kn	C	kn	С	kn	С	kn	C
0.41	163.44	0.71	205.79	1.01	235.95*	1.31	259.32	1.61	278.26	1.91	294.09
0.42	165.16	0.72	206.94	1.02	236.83	1.32	260.01	1.62	278.83	1.92	294.57
0.43	166.86	0.73	208.09	1.03	237.69	1.33	260.70	1.63	279.40	1.93	295.06
0.44	168.52	0.74	209.22	1.04	238.55	1.34	261.38	1.64	279.96	1.94	295.53
0.45	170.16	0.75	210.34	1.05	239.40	1.35	262.07	1.65	280.53	1.95	296.01
0.46	171.78	0.76	211.45	1.06	240.24	1.36	262.74	1.66	281.09	1.96	296.49
0.47	173.38	0.77	212.55	1.07	214.08	1.37	263.41	1.67	281.64	1.97	296.96
0.48	174.94	0.78	213.63	1.08	241.91	1.38	264.07	1.68	282.20	1.98	297.43
0.49	176.49	0.79	214.71	1.09	242.73	1.39	264.74	1.69	282.74	1.99	297.90
0.50	178.01	0.80	215.77	1.10	243.55	1.40	265.39	1.70	283.29	2.00	298.37
0.51	179.51	0.81	216.83	1.11	244.35	1.41	266.05	1.71	283.83	2.01	298.83
0.52	180.99	0.82	217.88	1.12	245.16	1.42	266.70	1.72	284.38	2.02	299.28
0.53	182.45	0.83	218.91	1.13	246.95	1.43	267.34	1.73	284.91	2.03	299.74
0.54	183.89	0.84	219.93	1.14	246.74	1.44	267.98	1.74	285.45	2.04	300.20
0.55	185.34	0.85	220.95	1.15	247.53	1.45	268.61	1.75	285.98	2.05	300.62
0.56	186.71	0.86	221.95	1.16	248.31	1.46	269.24	1.76	286.51	2.06	301.10
0.57	188.10	0.87	222.94	1.17	249.08	1.47	269.67	1.77	287.03	2.07	301.56
0.58	189.46	0.88	223.93	1.18	249.84	1.48	270.50	1.78	287.55	2.08	302.00
0.59	190.81	0.89	224.90	1.19	250.60	1.49	271.12	1.79	288.07	2.09	3.0.44
0.60	192.15	0.90	225.87	1.20	251.36	1.50	271.73	1.80	288.59	2.10	302.89
0.61	193.46	0.91	226.83	1.21	252.11	1.51	272.35	1.81	289.10	2.11	303.33
0.62	194.75	0.92	227.78	1.22	252.85	1.52	272.95	1.82	289.62	2.12	303.77
0.63	196.04	0.93	228.72	1.23	253.59	1.53	273.55	1.83	290.12	2.13	304.20
0.64	197.31	0.94	229.65	1.24	254.33	1.54	274.16	1.84	290.63	2.14	304.63
0.65	198.56	0.95	230.58	1.25	255.05	1.55	274.75	1.85	291.13	2.15	305.07
0.66	199.80	0.96	231.49	1.26	255.78	1.56	275.34	1.86	291.63	2.16	305.50
0.67	201.02	0.97	232.40	1.27	256.50	1.57	275.94	1.87	292.13	2.17	305.92
0.68	202.24	0.98	233.30	1.28	257.21	1.58	276.52	1.88	292.62	2.18	306.35
0.69	203.43	0.99	234.18*	1.29	257.92	1.59	277.10	1.89	293.11	2.19	306.77
0.70	204.62	1.00	235.07*	1.30	258.62	1.60	277.68	1.90	293.60	2.20	307.20

Interpolated values since C becomes indeterminate as either n or k approachers 1.00.
 k : Ratio of specific heat. k = Cp/Cv n : Isentropic expansion coefficient.
 C : Coefficient determined by the ratio of the specific heats of the gas or vapor at standard condition.

Maintenance Manual

1. Outline

It is necessary to select the type, size, material, etc of the safety valve matching to the facility to prevent disasters such as damage or explosion of utensil resulted from the extraordinarily increasing internal pressure by installing it in the pressure-generating device such as gas, heat, etc or a pressure vessel to maintain it If is not properly selected, sometimes it does not function sufficiently as a safety valve to cause a disaster. Therefore, we will indicate the note for handing that you should know as a final user(consumer) to exactly use the safety valve and explain its basic points.

2. Definition and type of a safety valve

2-1. Definition of a safety valve

A safety valve should keep the original airtight condition by discharging a fluid of excessive pressure automatically not depending on other assistant power or human power and reducing the pressure in the equipment to the fixed one. The safety valve is defined as follows in ISO international standard.

A safety valve is the valve to be closed by automatically emitting the pressure by a fluid without any other assistance except for its own power and recovering it to the normal when the pressure of a fluid exceeds the fixed pressure.

Also, in japanese Industrial Standard, it is explained as [¬]a valve with the ability to emit the fluid(steam and gas) of nominal emitting amount by automatically operating at a pre-fixed pressure at the entrance and becoming a normal condition again when the pressure decreases

2-2. Type of a safety valve

There are various types of different structures but a lot of them cannot be found in the existing market so we mention the general spring-type safety valve here.

a. Lift and full bore safety valve

A safety valve can be classified into lift safety valve and full bore safety valve according to the type of a device.(KS B 6216-1998)

□Lift safety valve (Figure 13)

The lift shall be more than 1/40 of the seat caliber or be less than 1/4 and with the disc opened, the area of the fluid passage of the seat caliber shall be minimum.

Figure 1 LIFT SAFETY VALVE

□ Full bore safety valve (Figure 14)

The seat caliber shall exceed 1.15 times of that of the neck. The area of the fluid passage of the seat orifice when the disc is opened shall exceed 1.05 times of neck caliber while the area of the fluidpassage of safety valve entrance and pipe shall exceed 1.7 times. (Refer to the catalogue for the names of each part.)

b. Types according to the differences of forms

□Lever type(Figure 15)

A lever is to check any defect of lift device on the pressurized condition and it is installed for the manual discharge from the safety valve irrespective of the operation condition to promptly discharge with parts of heat on operation. Provided that it is inappropriate for toxic gas, heating gas, liquid, etc.

□ losed type (Figure 16)

The structure of a valve is closed as it is dangerous to discharge toxic gas or heating gas close to the facility

□ Open type (Figure 17)

It is the structure to discharge directly into the air with the safety valve operating and the fluid discharged. The operation is relatively smooth as it is not so much effected by the pressure Provided that it is inappropriate for toxic gas, heating gas, liquid, etc.

CLOSED STRUCTURE OF BONNET

Figure 16 CLOSED TYPE

□ Top guide (Figure 18)

The disc is of piston structure for the smooth upward and downward movement of disc, which is supported by valve guide of cylinder type.

The both of entrance and exit have less pressure loss and good discharge coefficient.

□ Wing guide (Figure 19)

The guide part of disc is inserted in the seat for compact and the possibility for pressure loss on the discharged part will be less than the top guide type but it tends to have worse discharge coefficient than top guide as the guide in the seat causes resistance to the fluid.

Figure 18 TOP GUIDE

□ Soft seat (Figure 20)

It uses the soft synthetic resin on the seat of the safety valve and thanks to the elasticity, it attaches to the seat well.

Provided that the application scope of resin shall be applied and lower than the metal seat.

2-3. SAFETY VALVE and RELIEF VALVE

As explained in the section above, the object of the safety valve is to secure safety of the facility so it is necessary to set up not to operation under normal operation condition.

The relief value is the one with the function to automatically open according to the increase of the liquid pressure at a certain value and it has the object to limit the fixed pressure uniformly.

In terms of structure, it is similar to the safety valve so except for special cases, the safety valve can be used as a relief valve.

Also, there are some cases to call the structure, which can be used for gas and liquid, as a safety relief valve.

Figure 20 SOFT SEAT

Maintenance Manual

3. Meaning of terms

The meanings of the terms used for the safety valve are defined as follows in KS B6216-1998. Also, besides the standard terms, the frequently used words can be indicated as follows.

□ Extract from KS B6216-1998

(1) Safety valve

The valve with the ability to discharge the fluid(vapor and gas) of nominal discharge amount to automatically operate when the entrance pressure reaches the prescribed pressure and to restore to the normal condition again when the pressure decreases.

(2) Fixed pressure

Pressure indicated on the nameplate as a discharge pressure fixed on the design for the safety valve demanding the discharge pressure and as a discharge starting pressure for the safety valve demand the discharge starting pressure.

(3) Discharge starting pressure

As a pressure the safety valve starts to discharge, it is the pressure at the entrance when small amount of fluid(vapor or gas) discharge detected at the exit.

(4) Discharge pressure

As a pressure at the entrance when the fluid is discharged by the operation of the safety valve, it is the pressure with the lift to the extent, which can be measured or on the condition, which can recognize the consecutive discharge condition.

(5) Pressure to determine the nominal discharge amount

pressure to determine the nominal discharge amount, which is prescribed by the attached department

(6) Discharge stop pressure

The pressure at the entrance when the movement becomes 0 as the discharge pressure decreases, the safety valve is closed and the flow of the fluid stops actually.

(7) Pressure of discharge difference

Difference between the discharge pressure and discharge stop pressure at the safety valve demanding the discharge pressure and the difference between the discharge start pressure and the discharge stop pressure at the safety valve demanding the discharge start pressure.

(8) Movement

Movement on the axis direction of the disc or valve from the valve closing location to the valve opening location in the course of safety valve discharge.

(9) Nominal discharge amount

The discharge amount guaranteeing for each safety valve. Amount to be calculated according to the provision of 5. of KS B 6352(method to measure the discharge coefficient of the safety valve) and the provision of addendum.

(10) Nominal discharge coefficient

Coefficient applied to the nominal discharge amount. it shall be determined in the method according to the provision of 4.2.3 of KS B 6352 or the equivalent.

(11) DISC seat caliber

Inner diameter of contact of seat and disc.

(12) Discharge area

As an area of the part to determine the fluid amount to pass through the safety valve, it is the area used for calculation of nominal discharge amount.

(13) Caliber of the neck

The inner diameter of the narrowest part of the nozzle from the orifice to collect the fluid and the seat side.

(14) Discharge pressure

Pressure at the exit of the safety valve. There are two kinds of discharge pressure here.

(a) Pressure generated at the exit of the safety valve by the resistance of exhaust at the discharge of the safety valve.

(b) Pressure already existing at the exhaust before the safety valve discharges.

Other terms(JIS)

Other terms (JIS)

It means the condition to generate incomplete operation that the disc chatters the seat with the weak up and down vibration on the condition of incomplete discharge or starting the discharge.

It means the condition that the disc operation hits the seat seriously by the severe up and down movement due to the local pressure change in the connecting device or pipe resulted from the discharge of the safety valve.

It means the condition that the disc vibrates upward and downward to the extent not to chatter the seat in the course of lift when the safety valve is operating.

It means the condition that part of the liquid of high temperature evaporates when it is discharged into the air through the relief valve.

It means % of the established pressure of the difference between the pressure to determine the discharge amount and the established pressure.

Maintenance Manual

4. Principle of operation

Hop orifice is required for the clear operation as a safety valve as indicated in fugure 21.

The spring-type safety valve keeps airtight by always pressing the disc to the seat with the power of spring. This spring power is designed and assembled to break the airtight balance at the fixed pressure.

After all, at the time when a small amount starts to flow out as the balance becomes upset by the inner pressure to reach the fixed pressure(this phenomenon is referred to as discharge start). At that time, the discharged fluid is saved at the HOP orifice for a moment. At this time, the pressure is cast and the disc pushes upward.(this phenomenon is called to be discharge). The pushing disc become sealed again with the increased spring power as the inner pressure decreases. (this phenomenon is called to be discharge stop)

□ Figure 22 explains the operation flow.

In this figure, if the time between the discharge start and discharge is short, [¬]POP operates promptly._J

That is, as the safety increases, it becomes the safety valve of high efficiency.

Besides, there is something with the shape as indicated in Figure 23 to play the role in freely adjusting the HOP orifice and improving other capability but the principle of operation is same as HOP orifice type in Figure 21 as discussed.

5. Note for handling

5-1. Note for planning

(a)The safety valve shall be installed vertically on the ground of the place, where it is easy to repair, inspect or adjust it and it is not dangerous to human body at the time of discharge.

(b)The length in installing the safety valve shall be designed for the decrease of the fluid pressure not to exceed 3% of the discharge pressure at the time of discharge of the safety valve and shall be over the inner diameter of the safety valve entrance.

(c)The sefety valve is rebound in the opposite direction of the exhaust. In the design for installation, it shall have the enough strength against the compression, tensile and bending by rebound.(Figure 24)

bending in operation even with the discharge pipe fixed as there is bending stress on B section also.

(d)The length of the safety valve discharge pipe shall be as short as possible making sure that the back pressure at the exit when the safety valve discharges, do not exceed 10% of the discharge pressure. Also, it shall be more than the exit diameter of the safety valve.

(e) If uniting 2 safety valve discharge pipes or more, the angle shall be less than 45° (Y-type) and the pipe are of the jointed bottom shall be more than the sum of each pipe area.

(f) If inevitably installing the safety valve in the pipe, the length of the joint pipe shall be as short as possible.

(g)The open drainage shall be installed at the bottom lower than the valve seat in the valve body exit of the safety valve ettaching the discharge pipe. Provided that the drainage of discharge pipe can be shared if the designation diameter is less than 50mm. The drainage of the safety valve, whose valve body is cast iron or cast steel and whose designation diameter exceeds 65mm, shall comply with the provision of KSB 0222. (official taper screw)

5-2. Note for piping installation

(a)If installing the screw-type safety valve, do not turn it by holding the body but make sure to connect it by using the hexagonal side of the screw. If turning and connecting it by holding the body, it may cause leakage, etc. Also, bind the seal tape out of the edge so it is not entangled on the edge of the screw. If it is entangled on the edge, the tape will be cut when draining to cause leakage.

(b)Precise lapping processing has been done to increase the sealing performance on the seat of the safety valve.

If foreign substances such as dust or scale contact the seat in the operation of the safety valve, it may cause the leakage of the seat. Therefore, clean the tank and piping thoroughly before installing the safety valve and carry out the air purge.

Maintenance Manual

6. Repair and inspection

6-1. Please perform the repair and inspection at the same interval as the appearance inspection of the facility.

(a)Appearance inspection

- 1. Check whether the valve box is rotten or cracked.
- 2. Whether the safety valve leaks under the normal pressure. (check the leakage noise and temperature change)
- 3. Whether the installation section of the safety valve leaks
- 4. Check any abnormal vibration of the facility
- 5. Check the opening of the main valve of the safety valve. (Keep it opened)

6-2. Safety inspection

(a)The regular inspection shall be done every 6 months and sometimes check the following items.

- 1. Condition on the flange side.(corrosion, damage, etc)
- 2. Attachment condition of the foreign substance, scale, etc at the passage of the entrance.
- 3. Corrosion and damage of the valve box
- 4. Piping inspection

(b)In principle, perform the inspection of item a of 6-1 above after the popping of the safety valve and immediately repair any defect.

(c)Operation pressure check

- 1. Check whether there is no change by comparing the discharge start pressure or discharge pressure and stop pressure with the values indicated on the nameplate of the safety valve for the operation pressure.
- 2. At this time, please use air or incombustible gas in principle for the fluid.

(d)Seat sealing check

1. Check whether there is no leakage at 90% of the fixed pressure.

7. Adjustment

If it is not necessary to adjust the discharge pressure or discharge difference pressure, it can be done as follows.

7-1. Adjustment of discharge pressure

(Note) 1. At this time, make sure that the pressure is removed.

2. It is dangerous if the safety valve is operated while adjusting it, so do not make the face upward nor stand on the side of the exhaust.

The discharge pressure is strictly adjusted in the performance inspection by our company but there are some cases of some differences according to the variation of conditions such as safety valve design location, distance to the pressure gauge, etc. The tolerance of the discharge pressure for [¬]hot air and gas spring safety valve_J of KS B 6216-1998 is prescribed as indicated in the following table.

For	hot	air	

Table 1.

Fixed pressure kgf/cm ² {MPa}	Iolerance kgf/cm² {MPa}			
Less than 5 {0.5}	± 0.14 {0.014}			
From 5 {0.5} to 23 {2.3}	\pm (3% of the fixed pressure)			
From 23 {2.3} to 70 {7.0}	± 0.7 {0.07}			
More than 70 {7.0}	\pm (1% of the fixed pressure)			

□ For gas

From the fixed pressure to 1.1 times of the fixed pressure (a)Closed-type safety valve(Figure 25)

- 1. Detach the sealing and CAP (A)
- 2. Loosen the stop nut ©
- The discharge pressure can be adjusted by turning the adjusting screw (B). (turn it clockwise on the top to increase the discharge pressure and counterclockwise to decrease it).
- Fasten the stop nut © after the adjustment.
 (At this time, make sure that the adjusting screw

 B do not turn together).
- 5. Also, the adjustment scope shall be less than $\pm 10\%.$

(b)Lever-type safety valve (Figure 26)

- 1. Cut the sealing, pull the rivet \bigcirc out and remove handle B.
- 2. Remove the hexagonal stop screw D and then the lever cap A.
- 3. After this, the discharge pressure can be adjusted just like the closed type safety valve of 7-1.a.
- 4. In reassembling, make sure the lever[®] is 1 mm apart from the screw washer.

7-2. Adjustment of discharge difference pressure (Figure 27)

(Note)1. At this time, make sure that the pressure is removed.

2. It is dangerous if the safety valve is operated while adjusting it, so do not make the face upward nor stand on the side of the exhaust.

As for those with the device, which can adjust the discharge difference pressure by type. (adjusting ring section), it can be adjusted as follows.

Maintenance Manual

8. Cause and measure of trouble

The cause of the safety valve trouble are various according to the conditions such as the surrounding atmospheres of the using fluid and it is difficult to explain all of them so we select and describe the representative items among them here.

8-1. Seat leakage

The sealing performance of the safety valve depends of technology mostly. There were some leaky safety valves before the present lapping technology was developed but as the lapping technology greatly develops lately, it becomes possible to manufacture the safety valve of no leakage. However, if not paying sufficient attention to handling it, the leakage may be caused from the beginning of the use.(refer to 5-2 for the note for piping installation)

(a) By foreign substances

If not thoroughly performing the air purge for the piping, or in case of trial run with the sludge inserted in the fluid, there are some cases to put foreign substances in the seat and disc. At this time, they may be removed by manual operation simply but even after the operation, the seal side shall be sufficiently checked against any damage or foreign substances. In case of this damage or foreign substances, it is hard to handle in the user's position so it is necessary to return it to manufacturer promptly.

(b) Pipe pressure

1. Personal cause

When doing the secondary piping for the safety valve, if turning the safety valve severely, the seat may spin in the aspect of the safety valve structure. At this time, the sealing side gets damaged or the location of the adjustment ring changes, which may cause the weakness of the functioning. In this case, there are cases that the user repair or it is necessary to return to the manufacturer for replacement. It is required to sufficiently recognize and judge them and promptly handle it.

2. Inner stress cause

There is a case to have an adverse influence on the safety valve by the heat stress or remaining stress of the pipe. The problems of this is almost similar as the aforementioned personal causes but it is important to lay pipes, which can completely absorb the stress after the piping work.

(c) Balance of use stress and fixed stress

We explain the procedure from voltage boosting to discharge stop in the operation principle of the safety valve.

As explained here, there is a phenomenon of discharge start before the discharge of the safety valve.

If the use pressure considerably approaches to the fixed pressure, the phenomenon of discharge start is repeated as stated above, which may cause a disaster.

It is desirable to design the use pressure to be less than 85% of the fixed pressure.

8-2. Incomplete operation

The phenomenons of hunting, chattering and flutter in the explanation of terms occur if the discharge stop is not too large(considerably close to the fixed pressure) or if applying not too much back pressure when discharging the fluid(if it becomes difficult to exhaust the discharged fluid). Naturally, the sealing side or frictional section gets damaged by the upward or downward movement of the disc. It is good to design the back pressure on the discharge side not to exceed 10% of the discharge pressure.

8-3. Corrosion

The problem of corrosion can be solved by sufficient prior discussion between users and manufacturer in general but there are some cases that a fluid of non corrosion or materials, which are not corroded normally, corrode under some situations.(for example, electrolytic corrosion). It is important to sufficiently check it when inspecting for repair of the safety valve and to immediately handle it.

KST Series - Screw type, Low lift type

Selecting and specifying KSM Safety & Relief Valves is simple using the numbering system that follows. Each digit of the part number has a distinct significance. The digits describe the basic valve series, valve type, inlet / outlet type and connection type.

SERIES KST-11

SIZE 15A/20A/32A

This valves are small, compact and high performance valves widely used for small boiler, thermal expansion and the petrochemical industry as well as chemical and general industries and cover the wide pressure range, from low to high, of steam, air and gas, vapor, water and liquid.

NO	Part Name	Standard Material		
		BRONZE		
1	BODY	CAST STEEL		
		STAINLESS STEEL		
		BRONZE		
2	САР	CAST STEEL		
		STAINLESS STEEL		
3	SEAT	BRONZE		
5	JEAT	STAINLESS STEEL		
4	DISC	BRASS		
4		STAINLESS STEEL		
		BRASS		
5	SPINDLE	CARBON STEEL		
		STAINLESS STEEL		
6		CARBON STEEL		
0	SPRING	STAINLESS STEEL		
		BRASS		
7	ADJUSTING SCREW	CARBON STEEL		
		STAINLESS STEEL		
		BRASS		
8		CARBON STEEL		
		STAINLESS STEEL		
		BRASS		
9	SPRING GUIDE	CARBON STEEL		
		STAINLESS STEEL		
		NON-ASBESTOS		
10	GASKET	PTFE		
		GRAPHITE		

SERIES KST-11

SIZE 40A/50A

This valves are small, compact and high performance valves widely used for small boiler, thermal expansion and the petrochemical industry as well as chemical and general industries and cover the wide pressure range, from low to high, of steam, air and gas, vapor, water and liquid.

NO	Part Name	Standard Material		
		DUCTILE		
1	BODY	CAST STEEL		
		STAINLESS STEEL		
		BRONZE		
2	CAP	CAST STEEL		
		STAINLESS STEEL		
3	SEAT	BRONZE		
5		STAINLESS STEEL		
4		BRASS		
4	DISC	STAINLESS STEEL		
5		CARBON STEEL		
5	SPINDLE	STAINLESS STEEL		
6		CARBON STEEL		
0	SERING	STAINLESS STEEL		
	ADJUSTING SCREW	BRASS		
7		CARBON STEEL		
		STAINLESS STEEL		
		BRASS		
8		CARBON STEEL		
	SCREWNOT	STAINLESS STEEL		
		BRASS		
9	SPRING GUIDE	CARBON STEEL		
		STAINLESS STEEL		
		NON-ASBESTOS		
10	GASKET	PTFE		
		GRAPHITE		
		NON-ASBESTOS		
11	GASKET	PTFE		
		GRAPHITE		
12		BRASS		
12		STAINLESS STEEL		
		BRASS		
13	LOCK BOLT	CARBON STEEL		
		STAINLESS STEEL		

SERIES KST-12

SIZE 15A/20A/32A

This valves are small, compact and high performance valves widely used for small boiler, thermal expansion and the petrochemical industry as well as chemical and general industries and cover the wide pressure range, from low to high, of steam, air and gas, vapor.

NO	Part Name	Standard Material		
		BRONZE		
1	BODY	CAST STEEL		
		STAINLESS STEEL		
		BRONZE		
2	CAP	CAST STEEL		
		STAINLESS STEEL		
0	0547	BRONZE		
3	SEAT	STAINLESS STEEL		
4	DISC	BRASS		
4	DISC	STAINLESS STEEL		
		BRASS		
5	SPINDLE	CARBON STEEL		
		STAINLESS STEEL		
0		CARBON STEEL		
0	SPRING	STAINLESS STEEL		
		BRASS		
7	ADJUSTING SCREW	CARBON STEEL		
		STAINLESS STEEL		
		BRASS		
8	ADJUSTING	CARBON STEEL		
	SCREWNUT	STAINLESS STEEL		
		BRASS		
9	SPRING GUIDE	CARBON STEEL		
		STAINLESS STEEL		
10	LEVER	BRONZE		
11	HEX. BOLT	BRASS		
12	PIN	BRASS		
13	LIFTING WASHER	BRASS		

SERIES KST-12

SIZE 40A/50A

This values are small, compact and high performance values widely used for small boiler, thermal expansion and the petrochemical industry as well as chemical and general industries and cover the wide pressure range, from low to high, of steam, air and gas, vapor.

NO	Part Name	Standard Material		
		DUCTILE		
1	BODY	CAST STEEL		
		STAINLESS STEEL		
		BRONZE		
2	CAP	CAST STEEL		
		STAINLESS STEEL		
0	OFAT	BRONZE		
3	SEAT	STAINLESS STEEL		
4	DISC	BRASS		
4	DISC	STAINLESS STEEL		
F		CARBON STEEL		
5	SPINDLE	STAINLESS STEEL		
6	SDDING	CARBON STEEL		
0	SPRING	STAINLESS STEEL		
		BRASS		
7	ADJUSTING SCREW	CARBON STEEL		
		STAINLESS STEEL		
		BRASS		
8	SCREW/NUT	CARBON STEEL		
		STAINLESS STEEL		
		BRASS		
9	SPRING GUIDE	CARBON STEEL		
		STAINLESS STEEL		
10	LEVER	BRONZE		
		NON-ASBESTOS		
11	GASKET	PTFE		
		GRAPHITE		
12	BLOW DOWN RING	BRASS		
	BEOW BOWNTAING	STAINLESS STEEL		
		BRASS		
13	LOCK BOLT	CARBON STEEL		
		STAINLESS STEEL		
14	HEX. BOLT	BRASS		
15	HEX. BOLT	CARBON STEEL		
16	NUT	CARBON STEEL		
17	LIFTING WASHER	BRASS		

General Dimension

KST-11

INLET / OUTLET SCREW - PT

LOW LIFT TYPE (unit : mm)							
SIZE		CENTER TO FACE		APPROX. HEIGHT	APPROX. HEIGHT		
		L1	L2	Н	(kg)		
15A×20A	25.434	34	53	82	0.85		
20A×20A	25.434	34	53	82	0.90		
25A×25A	45.216	40	65	96	1.25		
32A×32A	75.4385	45	78	105	1.70		
40A×40A	113.354	64	104	155	3.90		
50A×50A	180.864	83	113	192	7.20		

Center to face tolerance : $\pm 1.5 \text{mm}$

INLET / OUTLET SCREW - PT or NPT

FULL LIFT TYPE (unit : mm)					
SIZE		CENTER TO FACE		APPROX. HEIGHT	APPROX. HEIGHT
metXOutiet		L1	L2	н	(kg)
15A×20A	78.5	43	66	116	1.48
20A×25A	78.5	45	69	116	1.52
25A×40A	132.665	64	104	155	4.10

Center to face tolerance : $\pm 1.5 \text{mm}$

KST-12

INLET / OUTLET SCREW - PT

LOW LIFT TYPE (unit : mm)					
SIZE Inlet×Outlet	DISCHARGE AREA (mm ²)	CENTER TO FACE		APPROX. HEIGHT	APPROX. HEIGHT
454	05.404		50	101	(
15A×20A	25.434	34	53	101	0.90
20A×20A	25.434	34	53	101	0.95
25A×25A	45.216	40	65	117	1.30
32A×32A	75.4385	45	78	126	1.90
40A×40A	113.354	64	104	184	4.15
50A×50A	180.864	83	113	221	7.45

Center to face tolerance : $\pm 1.5 \text{mm}$

INLET / OUTLET SCREW - PT or NPT

F	FULL LIFT TYPE (unit : mm)					
	SIZE		ORIFICE CENTER TO FACE		APPROX. HEIGHT	APPROX. HEIGHT
			L1	L2	Н	(kg)
	15A×20A	78.5	43	66	126	1.64
	20A×25A	78.5	45	69	126	1.69
	25A×40A	132.665	64	104	184	4.10

Center to face tolerance : $\pm 1.5 \text{mm}$

Standard Valve Selection Table

	•					(unit : mm
	MATERIALS			VALVE SIZE	END CONNECTION	
BODY	SEAT & DISC	SPRING	ТҮРЕ	INLET×ORIFICE DIA.×OUTLET	INLET (Male)	OUTLET (Female)
BRONZE	BRONZE & BRASS	CARBON STEEL	KST-11	15A×12.5×20A	PT	PT
CARBON STEEL	STAINLESS STEEL	STAINLESS STEEL	KST-12	20A×18×25A		
STAINLESS STEEL				25A×24×25A		
(32A and Smaller)				32A×31×32A		
DUCTILE	BRONZE & BRASS	CARBON STEEL	KST-11	40A×38×40A	PT	PT
CARBON STEEL	STAINLESS STEEL	STAINLESS STEEL	KST-12	50A×48×50A		
STAINLESS STEEL						
(40A and Larger)						

LOW LIFT TYPE

FULL LIFT TYPE

	MATERIALS		VALVE SIZE	END CON	NECTION	
BODY	SEAT & DISC	SPRING	ТҮРЕ	INLET×ORIFICE DIA.×OUTLET	INLET (Male)	OUTLET (Female)
CARBON STEEL	STAINLESS STEEL	CARBON STEEL	KST-11	15A×10×20A	PT	PT
STAINLESS STEEL		STAINLESS STEEL	KST-12	20A×10×25A	or	or
(25A and Smaller)				25A×13×40A	NPT	NPT

If at particular overpressure the vave attains high lift, the discharge area is established by measurement of the inlet passage at its least diameter. Some safety valves operate at low lift, in which case the controlling flow area is the so-called curtain area. This area is the product of the circumference of the minimum passage through the valve seat and valve lift.

Formulas for the curtain area are :

 $A = \pi DL$ (Flat seat) $= \pi DL \sin\theta$ (Conical seat) $= \pi /4 dt^2$ (Full lift type)

Where, A : effective discharge area (mm²)

- D : diameter of Disc seat opening (mm)
- L : lift (mm)
- θ : angle between the discharging part and the valve axis sin 45° =0.707
- d : inside diameter of Disc seat face on the Disc side (mm)
- dt: throat diameter (mm)
- ds: bore of Disc seat face (mm)
- di : diameter of intake opening for steam or gas (nominal diameter)

In case ds>d as conical seat

Fig. 1 Effective Discharge Area and Diameter of Disc Seat Opening

Calculation Of Safety & Relief Valve Capacity

Code : KS B 6216 or KOSHA for Steam

Capacity Table of Sat. Steam

LOW LIFT TYPE

$W = 5.246 \times C \times Kd \times A \times (P+0.1) \times 0.9$

Nomencla	iture
----------	-------

W	Capacity of steam, kg/h
	Effective Discharge Area, mm ²
٨	Low Lift Type : A = π DL
A	D = diameter of disc seat (mm)
	L = lift (mm)
	For Set Pressure ≤ 0.1MPa
	P = Set Pressure + 0.02MPa
Р	
	For Set Pressure > 0.1MPa
	P = Set Pressure × 1.03
Kd	Coefficient of discharge (Fig. 3, page 12)
С	Superheat Correction factor

		-					(unit : kg/h)
SI	ZE	15A	20A	25A	32A	40A	50A
Dia. of Dis	c Seat (mm)	18	18	24	31	38	48
Lift		0.45	0.45	0.6	0.775	0.95	1.2
0.2	0.02	16.5	16.5	29.3	48.9	73.5	117
0.3	0.029	17.5	17.5	31.2	52.1	78.3	124
0.5	0.049	19.9	19.9	35.4	59.1	88.8	141
0.7	0.069	22.2	22.2	39.6	66.1	99.3	158
0.9	0.088	24.5	24.5	43.6	72.7	109	174
1	0.098	25.7	25.7	45.7	76.2	114	182
1.2	0.118	26.1	26.1	46.4	77.4	116	185
1.5	0.147	29.6	29.6	52.7	87.9	132	210
1.7	0.167	32	32	57	95.1	142	228
2	0.196	35.5	35.5	63.2	105	158	253
2.2	0.216	38	38	67.6	112	169	270
2.5	0.245	41.5	41.5	73.8	123	185	295
2.7	0.265	43.9	43.9	78.1	130	196	312
3	0.294	47.5	47.5	84.4	140	211	337
3.2	0.314	49.9	49.9	88.7	148	222	355
3.5	0.343	53.4	53.4	95	158	238	380
3.7	0.363	55.8	55.8	99.3	165	249	397
4	0.392	59.4	59.4	105	176	264	422
4.2	0.412	61.8	61.8	109	183	275	439
4.5	0.441	65.3	65.3	116	193	291	464
4.7	0.461	67.7	67.7	120	201	302	482
5	0.49	71.3	71.3	126	211	317	507
5.2	0.51	73.7	73.7	131	218	328	524
5.5	0.539	77.2	77.2	137	229	344	549
5.7	0.559	79.6	79.6	141	236	355	566
6	0.588	83.2	83.2	147	246	370	591
6.2	0.608	85.6	85.6	152	254	381	608
6.5	0.637	89.1	89.1	158	264	397	634
6.7	0.657	91.5	91.5	162	271	408	651
6.9	0.676	93.8	93.8	166	278	418	667
7	0.686	95.1	95.1	169	282	423	676
7.2	0.706	97.5	97.5	173	289	434	693
7.5	0.735	101	101	179	299	450	718
7.7	0.755	103	103	183	306	461	735
8	0.784	107	107	190	317	476	761
8.2	0.804	109	109	194	324	487	778
8.5	0.833	112	112	200	335	503	803
8.7	0.853	115	115	205	342	514	820
9	0.882	118	118	211	352	530	845
9.2	0.902	121	121	215	359	540	862
9.5	0.931	124	124	221	370	556	887
9.7	0.951	127	127	226	377	567	905
10	0.98	130	130	232	388	583	930
10.2	1	133	133	236	395	593	947
10.5	1.029	136	136	243	405	609	972
kaf/cm ² a	MPag						

Pressure

In case ds <d as<="" th=""><th>flat seat</th></d>	flat seat

In case ds=dt as flat seat

Fig. 2 Effective Discharge Area and Diameter of Disc Seat Opening

(unit · ka/h)

Calculation Of Safety & Relief Valve Capacity

Capacity Table of Air

LOW LIFT TYPE

Code : KS B 6216 or KOSHA for Air

$$W = \frac{C \times Kd \times A \times P1 \times (M)^{1/2} \times 0.9}{(7 \times T)^{1/2}}$$

 $(Z \times T)^{1/2}$

Nomenclature

W	Capacity of Air, kg/h
	Effective Discharge Area, mm ²
^	Low Lift Type : $A = \pi DL$
A	D = diameter of disc seat (mm)
	L = lift (mm)
P1	Upstream relieving pressure absolute, MPa
М	Molecular weight
	Air=28.96
Т	Absolute temperature of gas, K
C	Coefficient determined by ratio of the specific
C	heats of gas
Kd	Coefficient of discharge (Fig. 3, page 12)
_	

Z Compressibility factor

Figure 3 Coefficient of Discharge Kd

L :lift (mm)

D : diameter of valve seat opening

Dia. of Disc Seat (cm) 18 18 24 31 38 48 Lift (cm) 0.45 0.45 0.6 0.775 0.95 1.2 0.2 0.02 23.4 23.4 41.7 69.6 104 166 0.3 0.029 25.3 25.5 87.6 131 210 0.7 0.069 33.7 33.7 60 100 150 240 0.9 0.088 37.7 37.7 67 111 168 268 1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 189.1 148 243 366 2.0 0.166 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502	SIZE		15A	20A	25A	32A	40A	50A
Lift (m) 0.45 0.45 0.6 0.775 0.95 1.2 0.2 0.02 23.4 23.4 41.7 69.6 104 166 0.3 0.029 25.3 25.3 45 75.2 113 180 0.5 0.049 29.5 52.5 87.6 131 210 0.7 0.069 33.7 37.7 67 111 168 288 1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 89.1 148 223 356 1.7 0.167 54.3 54.3 96.5 161 242 386 2.0 0.216 64.6 64.6 114 191 287 429 2.2 0.216 74.8 74.8 133 222 333 <td< th=""><th>Dia. of Dis</th><th>c Seat (mm)</th><th>18</th><th>18</th><th>24</th><th>31</th><th>38</th><th>48</th></td<>	Dia. of Dis	c Seat (mm)	18	18	24	31	38	48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lift		0.45	0.45	0.6	0.775	0.95	1.2
0.3 0.029 25.3 25.3 45 75.2 113 180 0.5 0.049 29.5 29.5 52.5 87.6 131 210 0.7 0.069 33.7 33.7 60 100 150 240 0.9 0.088 37.7 37.7 67 111 168 268 1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 89.1 148 223 356 1.7 0.167 54.3 54.3 96.5 161 242 386 2.2 0.216 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 133 222 333 <td>0.2</td> <td>0.02</td> <td>23.4</td> <td>23.4</td> <td>41.7</td> <td>69.6</td> <td>104</td> <td>166</td>	0.2	0.02	23.4	23.4	41.7	69.6	104	166
0.5 0.049 29.5 29.5 52.5 87.6 131 210 0.7 0.069 33.7 33.7 60 100 150 240 0.9 0.088 37.7 37.7 67 111 168 288 1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 89.1 148 223 356 1.7 0.167 54.3 54.3 96.5 161 242 386 2 0.196 60.4 60.4 107 179 269 429 2.2 0.216 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 187	0.3	0.029	25.3	25.3	45	75.2	113	180
0.7 0.069 33.7 33.7 60 100 150 240 0.9 0.088 37.7 37.7 67 1111 168 268 1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 89.1 148 223 356 2 0.167 54.3 54.3 96.5 1611 242 386 2 0.167 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.7 0.363 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 166 224 374 562 898 5.2 0.51 126 224 374	0.5	0.049	29.5	29.5	52.5	87.6	131	210
0.9 0.088 37.7 37.7 67 111 168 268 1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 89.1 148 223 356 1.7 0.167 54.3 54.3 96.5 161 242 386 2 0.196 60.4 60.4 107 179 269 429 2.2 0.216 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 187 313 471 751 4.5 0.441 116 116 266 344 517 825 5 0.59 136 136 242	0.7	0.069	33.7	33.7	60	100	150	240
1 0.098 39.8 39.8 70.8 118 177 283 1.2 0.118 44 44 78.2 130 196 313 1.5 0.147 50.1 50.1 89.1 148 223 356 1.7 0.167 54.3 54.3 96.5 161 242 386 2 0.196 60.4 60.4 107 179 269 429 2.2 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 116 266 244 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136	0.9	0.088	37.7	37.7	67	111	168	268
1.20.118444478.21301963131.50.14750.150.189.11482233561.70.16754.354.396.516124238620.19660.460.41071792694292.20.21664.664.61141912874592.50.24570.670.61252093155022.70.26574.874.813322233353230.29480.980.91432403605753.50.34391.291.21622704066483.70.36395.495.416928342567840.3921011011803014527224.20.4121051051873134717514.50.4411111111983314987954.70.46111611620634451782550.5391321322353925909415.70.55913613624240560897160.58814214225342363510146.20.60814614626143565410446.50.6371521522714536811087 </td <td>1</td> <td>0.098</td> <td>39.8</td> <td>39.8</td> <td>70.8</td> <td>118</td> <td>177</td> <td>283</td>	1	0.098	39.8	39.8	70.8	118	177	283
1.5 0.147 50.1 50.1 89.1 148 223 356 1.7 0.167 54.3 54.3 96.5 161 242 386 2 0.196 60.4 60.4 107 179 269 429 2.2 0.216 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 224 374 562 898 5.5 0.539 132 132 235 423	1.2	0.118	44	44	78.2	130	196	313
1.7 0.167 54.3 54.3 96.5 161 242 386 2 0.196 60.4 60.4 107 179 269 429 2.2 0.216 64.6 64.6 114 191 287 459 2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 187 313 471 751 4.5 0.441 111 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 124 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 <t< td=""><td>1.5</td><td>0.147</td><td>50.1</td><td>50.1</td><td>89.1</td><td>148</td><td>223</td><td>356</td></t<>	1.5	0.147	50.1	50.1	89.1	148	223	356
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7	0.167	54.3	54.3	96.5	161	242	386
2.20.21664.664.61141912874592.50.24570.670.61252093155022.70.26574.874.813322233353230.29480.980.91432403605753.20.31485.185.11512523796053.50.34391.291.21622704066483.70.36395.495.416928342567840.3921011011803014527224.20.4121051051873134717514.50.4411111111983314987954.70.46111611620634451782550.491221222173625448685.20.511261262243745628985.50.5391321322353925909415.70.5591361362424056089716.70.68715715727746670011176.90.676161161286477718114670.68616316329048472711607.20.7061671672974967461190<	2	0.196	60.4	60.4	107	179	269	429
2.5 0.245 70.6 70.6 125 209 315 502 2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.5 0.637 152 152 271 453 681 1087 6.7 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 <	2.2	0.216	64.6	64.6	114	191	287	459
2.7 0.265 74.8 74.8 133 222 333 532 3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 157 157 279 466 700 1117 6.9 0.676 161 161 286	2.5	0.245	70.6	70.6	125	209	315	502
3 0.294 80.9 80.9 143 240 360 575 3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.766 167 167 297	2.7	0.265	74.8	74.8	133	222	333	532
3.2 0.314 85.1 85.1 151 252 379 605 3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 2	3	0.294	80.9	80.9	143	240	360	575
3.5 0.343 91.2 91.2 162 270 406 648 3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 29	3.2	0.314	85.1	85.1	151	252	379	605
3.7 0.363 95.4 95.4 169 283 425 678 4 0.392 101 101 180 301 452 722 4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 198 331 498 795 4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 <	3.5	0.343	91.2	91.2	162	270	406	648
4 0.392 1011011803014527224.2 0.412 1051051873134717514.5 0.441 1111111983314987954.7 0.461 1161162063445178255 0.49 1221222173625448685.2 0.51 1261262243745628985.5 0.539 1321322353925909415.7 0.559 1361362424056089716 0.588 14214225342363510146.2 0.608 14614626143565410446.5 0.637 15215227145368110876.7 0.657 15715727946670011176.9 0.676 16116128647771811467 0.686 16316329048472711607.2 0.706 16716729749674611907.5 0.735 17317330851477312347.7 0.755 17717731552779212638 0.784 18318332654581913078.2 0.804 188188334557 </td <td>3.7</td> <td>0.363</td> <td>95.4</td> <td>95.4</td> <td>169</td> <td>283</td> <td>425</td> <td>678</td>	3.7	0.363	95.4	95.4	169	283	425	678
4.2 0.412 105 105 187 313 471 751 4.5 0.441 111 111 118 331 498 795 4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326	4	0.392	101	101	180	301	452	722
4.5 0.441 1111111983314987954.7 0.461 1161162063445178255 0.49 1221222173625448685.2 0.51 1261262243745628985.5 0.539 1321322353925909415.7 0.559 1361362424056089716 0.588 14214225342363510146.2 0.608 14614626143565410446.5 0.637 15215227145368110876.7 0.657 15715727946670011176.9 0.676 16116128647771811467 0.686 16316329048472711607.2 0.706 16716729749674611907.5 0.735 17317330851477312347.7 0.755 17717731552779212638 0.784 18318332654581913078.2 0.804 18818833455783713378.5 0.833 19419434557586513808.7 0.853 1981983525	4.2	0.412	105	105	187	313	471	751
4.7 0.461 116 116 206 344 517 825 5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 865 1380 8.7 0.853 198 198 352	4.5	0.441	111	111	198	331	498	795
5 0.49 122 122 217 362 544 868 5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363	4.7	0.461	116	116	206	344	517	825
5.2 0.51 126 126 224 374 562 898 5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 <td< td=""><td>5</td><td>0.49</td><td>122</td><td>122</td><td>217</td><td>362</td><td>544</td><td>868</td></td<>	5	0.49	122	122	217	362	544	868
5.5 0.539 132 132 235 392 590 941 5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 <	5.2	0.51	126	126	224	374	562	898
5.7 0.559 136 136 242 405 608 971 6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389	5.5	0.539	132	132	235	392	590	941
6 0.588 142 142 253 423 635 1014 6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 <	5.7	0.559	136	136	242	405	608	971
6.2 0.608 146 146 261 435 654 1044 6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 <td>6</td> <td>0.588</td> <td>142</td> <td>142</td> <td>253</td> <td>423</td> <td>635</td> <td>1014</td>	6	0.588	142	142	253	423	635	1014
6.5 0.637 152 152 271 453 681 1087 6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 <td>6.2</td> <td>0.608</td> <td>146</td> <td>146</td> <td>261</td> <td>435</td> <td>654</td> <td>1044</td>	6.2	0.608	146	146	261	435	654	1044
6.7 0.657 157 157 279 466 700 1117 6.9 0.676 161 161 279 466 700 1117 6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 229	6.5	0.637	152	152	271	453	681	1087
6.9 0.676 161 161 286 477 718 1146 7 0.686 163 163 290 484 727 1160 7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	6.7	0.657	157	157	279	466	700	1117
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.9	0.676	161	161	286	477	718	1146
7.2 0.706 167 167 297 496 746 1190 7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 11 229 229 407 679 1021 1629	7	0.686	163	163	290	484	727	1160
7.5 0.735 173 173 308 514 773 1234 7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 122 229 229 407 679 1021 1629	7.2	0.706	167	167	297	496	746	1190
7.7 0.755 177 177 315 527 792 1263 8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	7.5	0.735	173	173	308	514	773	1234
8 0.784 183 183 326 545 819 1307 8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021	7.7	0.755	177	177	315	527	792	1263
8.2 0.804 188 188 334 557 837 1337 8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.852 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	8	0.784	183	183	326	545	819	1307
8.5 0.833 194 194 345 575 865 1380 8.7 0.853 198 198 352 588 883 1410 9 0.852 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	8.2	0.804	188	188	334	557	837	1337
8.7 0.853 198 198 352 588 883 1410 9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	8.5	0.833	194	194	345	575	865	1380
9 0.882 204 204 363 606 910 1453 9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	8.7	0.853	198	198	352	588	883	1410
9.2 0.902 208 208 370 618 929 1483 9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	9	0.882	204	204	363	606	910	1453
9.5 0.931 214 214 381 636 956 1526 9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	9.2	0.902	208	208	370	618	929	1483
9.7 0.951 218 218 389 649 975 1556 9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	9.5	0.931	214	214	381	636	956	1526
9.9 0.97 222 222 396 661 993 1584 10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	9.7	0.951	218	218	389	649	975	1556
10 0.98 224 224 399 667 1002 1599 10.2 1 229 229 407 679 1021 1629	9.9	0.97	222	222	396	661	993	1584
10.2 1 229 229 407 679 1021 1629	10	0.98	224	224	399	667	1002	1599
	10.2	1	229	229	407	679	1021	1629

Pressure

Calculation Of Safety & Relief Valve Capacity

Code : KS B 6216 or KOSHA for Nitrogen

Capacity Table of Nitrogen

LOW LIFT TYPE

\A/ _	$C \times Kd \times A \times P1 \times (M)^{1/2} \times 0.9$
vv —	(7 , (T)1/2

 $(Z \times T)^{1/2}$

Nomenclature

W	Capacity of Nitrogen, kg/h
	Effective Discharge Area, mm ²
٨	Low Lift Type : A = π DL
A	D = diameter of disc seat (mm)
	L = lift (mm)
P1	Upstream relieving pressure absolute, MPa
N/	Molecular weight
IVI	Nitrogen=28
Т	absolute temperature of gas, K
С	Coefficient determined by ratio of the specific
	heats of gas
Kd	Coefficient of discharge (Fig. 3, page 12)
Z	Compressibility factor

SI	ZE	15A	20A	25A	32A	40A	50A			
Dia. of Dis	c Seat (mm)	18	18	24	31	38	48			
Lift		0.45	0.45	0.6	0.775	0.95	1.2			
0.2	0.02	23	23	41	68.4	102	164			
0.3	0.029	24.9	24.9	44.3	73.9	111	177			
0.5	0.049	29	29	51.6	86.2	129	206			
0.7	0.069	33.1	33.1	59	98.4	147	236			
0.9	0.088	37.1	37.1	65.9	110	165	263			
1	0.098	39.1	39.1	69.6	116	174	278			
1.2	0.118	43.3	43.3	76.9	128	192	307			
1.5	0.147	49.2	49.2	87.6	146	219	350			
1.7	0.167	53.4	53.4	94.9	158	238	379			
2	0.196	59.4	59.4	105	176	264	422			
2.2	0.216	63.5	63.5	112	188	283	451			
2.5	0.245	69.5	69.5	123	206	309	494			
2.7	0.265	73.6	73.6	130	218	328	523			
3	0.294	79.6	79.6	141	236	354	566			
3.2	0.314	83.7	83.7	148	248	373	595			
3.5	0.343	89.7	89.7	159	266	399	638			
3.7	0.363	93.8	93.8	166	278	418	667			
4	0.392	99.8	99.8	177	296	445	710			
4.2	0.412	103	103	184	308	463	739			
4.5	0.441	109	109	195	326	490	781			
4.7	0.461	114	114	202	338	508	811			
5	0.49	120	120	213	356	535	853			
5.2	0.51	124	124	220	368	553	883			
5.5	0.539	130	130	231	386	580	925			
5.7	0.559	134	134	238	398	598	955			
6	0.588	140	140	249	416	625	997			
6.2	0.608	144	144	256	428	643	1027			
6.5	0.637	150	150	267	446	670	1069			
6.7	0.657	154	154	274	458	688	1098			
6.9	0.676	158	158	281	470	706	1126			
7	0.686	160	160	285	476	715	1141			
7.2	0.706	164	164	292	488	733	1170			
7.5	0.735	170	170	303	506	760	1213			
7.7	0.755	174	174	310	518	778	1242			
8	0.784	180	180	321	536	805	1285			
8.2	0.804	184	184	328	548	823	1314			
8.5	0.833	190	190	339	566	850	1357			
8.7	0.853	194	194	346	578	869	1386			
9	0.882	200	200	357	596	895	1429			
9.2	0.902	205	205	364	608	914	1458			
9.5	0.931	211	211	375	626	940	1501			
9.7	0.951	215	215	382	638	959	1530			
9.9	0.97	219	219	389	649	976	1558			
10	0.98	221	221	393	656	985	1573			
10.2	1	225	225	400	668	1004	1602			
kaf/cm²a	MPag									

(unit : kg/h)

Pressure

Calculation Of Safety & Relief Valve Capacity

Code : HPGCL for Water

$$W = \frac{Kd \times Kw \times Kc \times Kp \times A \times (1.25P-Pb)^{1/2}}{11.79 \times (0.1)^{1/2}} \times 60$$

11.78×(G)^{1/2}

Nomenclature

W	Capacity of Water, kg/h
А	Effective Discharge Area, mm ²
	Low Lift Type : A = π DL
	D = diameter of disc seat (mm)
	L = lift (mm)
Kd	Coefficient of discharge, 0.65
Кр	The factor of overpressure, 0.6 at 10%
Р	Set pressure, kPag
G	Specific gravity of water
Kw	Back pressure correction factor
Kv	Viscosity correction factor
Pb	Back pressure, kPag
Kc	Safety Valve 1.0

Capacity Table of Water

LOW LIFT TYPE

Si	ze	15A	15A 20A 25A 32A 4										
Dia. of Dis	c Seat (mm)	18	18	24	31	38	48						
Lift		0.45	0.45	0.6	0.775	0.95	1.2						
0.2	0.02	252	252	449	749	1125	1796						
0.3	0.029	304	304	540	902	1355	2163						
0.5	0.049	395	395	702	1172	1762	2811						
0.7	0.069	469	469	834	1391	2091	3336						
0.9	0.088	529	529	942	1571	2361	3768						
1	0.098	559	559	994	1658	2492	3976						
1.2	0.118	613	613	1090	1819	2734	4363						
1.5	0.147	684	684	1217	2031	3052	4870						
1.7	0.167	729	729	1297	2165	3253	5190						
2	0.196	790	790	1405	2345	3524	5623						
2.2	0.216	830	830	1475	2462	3699	5903						
2.5	0.245	884	884	1571	2622	3940	6287						
2.7	0.265	919	919	1634	2727	4098	6538						
3	0.294	968	968	1721	2872	4316	6887						
3.2	0.314	1000	1000	1779	2968	4460	7117						
3.5	0.343	1046	1046	1859	3102	4662	7439						
3.7	0.363	1076	1076	1913	3192	4796	7652						
4	0.392	1118	1118	1988	3317	4984	7952						
4.2	0.412	1146	1146	2038	3400	5109	8153						
4.5	0.441	1186	1186	2108	3518	5286	8435						
4.7	0.461	1212	1212	2156	3597	5405	8624						
5	0.49	1250	1250	2222	3708	5572	8891						
5.2	0.51	1275	1275	2267	3783	5685	9071						
5.5	0.539	1311	1311	2331	3889	5844	9325						
5.7	0.559	1335	1335	2374	3961	5952	9496						
6	0.588	1369	1369	2435	4062	6104	9740						
6.2	0.608	1392	1392	2476	4131	6207	9904						
6.5	0.637	1425	1425	2534	4228	6353	10137						
6.7	0.657	1447	1447	2573	4294	6452	10295						
6.9	0.676	1468	1468	2610	4356	6545	10443						
7	0.686	1479	1479	2630	4388	6593	10520						
7.2	0.706	1500	1500	2668	4451	6689	10672						
7.5	0.735	1531	1531	2722	4542	6825	10889						
7.7	0.755	1552	1552	2759	4603	6917	11037						
8	0.784	1581	1581	2811	4691	7048	11246						
8.2	0.804	1601	1601	2847	4750	7138	11389						
8.5	0.833	1630	1630	2898	4835	7265	11593						
8.7	0.853	1649	1649	2932	4893	7352	11731						
9	0.882	1677	1677	2982	4975	7476	11929						
9.2	0.902	1696	1696	3015	5031	7560	12063						
9.5	0.931	1723	1723	3064	5112	7681	12256						
9.7	0.951	1741	1741	3096	5166	7763	12387						
9.9	0.97	1759	1759	3127	5218	7840	12510						
10	0.98	1768	1768	3143	5244	7880	12574						
10.2	1	1786	1786	3175	5298	7960	12702						
kgf/cm ² g	MPag												

Pressure

			Î		1	Ì					Î								
					 	<u> </u>				 				 	 	 			
		 			1				_			_			 	 			
		 						_						 		 			
											1							 1	

	1		1		ì	Ì	1	1	1	 	-	 						1		 - 1			Ĩ	Ĩ	
										 		 		 	 							i			_
										 		 	;	 	 					 					
-										 		 		 	 		 			 					
1																							Ť	î	
										 		 	;	 	 		 			 					
										 		 		 	 					 					_
	<u> </u>									 		 													
																								I	
												 		 	 					 					_
		-																							
-										 		 		 	 					 					-
	ļ									 		 		 	 		 			 					
5										 		 		 	 		 					_			
					<u> </u>							 		 	 		 			 					
	1											 -									1	Î		Ť	
										 		 		 	 		 				0				
ļ			ļ	ļ	ļ		$\left \right $			 		 		 						 					
-												 			 										
	ļ	<u> </u>	<u> </u>			ļ		L		 		 		 	 		 			 					
-						<u> </u>	\neg			 		 				_			_					-	
	ļ						$\left - \right $			 		 		 	 										
																						i i			

Product Service Qualified Certificate

ISO 9001:2015

ISO 14001:2015

ISO 45001:2018

CE: Globe Control Valve

CE : Ball Valve

Research Institute

ASME U, PP Stemp

EAC : RUSSIA TRCU

API 6D / 600 By KSM

GVK(KSF) PRESSURE SAFETY VALVE

Total Engineering Solution Service

GVK CO.,LTD.

HEAD OFFICE

Techno Valley C-503, 236, Jubuto-ro, Bupyeong-gu, Incheon, Republic of Korea

> TEL +82-32-678-7972 FAX +82-32-678-7973 EMAIL ican@gvkvalve.com

> > www.gvkvalve.com