

GVK(GRC/RM/RX) AUTO-RECIRCULATION VALVE

Total Engineering Solution Service

Mission

기초에 근거하여 원천 기술을 살리고 원천 기술을 극대화하여 세계 중심에 서는 것 To stand at the centre of the world by utilizing original technology based on the foundation and maximizing original technology

우리는 옳은 일과 가치 있는 일에 주저함이 없이 최선을 다하고 실천하여 세계의 중심에 서자 Let us put ourselves at the center of the world by doing our best and not hesitating to stand up for what is right and worthy

GLOBAL VISION KOREA

Valve Product Service

GVK Limited, founded in June 2020 by a leader with 38 years of experience, focuses on R&D while ensuring quality, price, and functionality through domestic production. The company offers Process Valves, Valve Equipment, and Total Engineering services for industries such as Gas, Refining, Petroleum, Power generation, Environment, and Water treatment. With a management team possessing 30-40 years of experience, GVK has developed numerous patents and adheres to quality standards like ISO 9001, 14001, 45001, and CE. Recognized for its advanced automatic control valves, GVK also supplies a range of Control Valves globally through OEM and ODM partnerships.

Although still in the early design and manufacturing stages, GVK has emerged as a leading company in Korea, equipped with skilled personnel and testing capabilities. The company aims to lower production costs, enhance efficiency, and improve quality while accumulating Hyper-Intelligence Valve Engineering (HIVE) technology. GVK Limited is committed to meeting customer needs with competitive pricing and high value-added services.

The Professional Provider of Automatic valve Actuastors

Mutually Beneficial Relationships

To Be Your Best Partner

Twenty years experience "one stop" goods and services

GRC/RM/RX SERIES Auto-Recirculation Valve

Total Engineering Solution Service

GVK / GRC/RM/RX SeriesAuto-Recirculation Valve

Contents

Series GRC/RM/RX

- 04 Structural Features
- 05

06

GENERAL / 3-way Self-regulating Recirculation Check Valve System

The **"RC/RM/RX-series"** provides reliable, economical protection for centrifugal pumps against the serious damage from overheating and instability that can result from even a few minutes of low flow, By providing recirculation flow to the inlet of the pump, the RC-series helps ensure a minimum flow for stable pump operation.

The modulating RC/RM-series creates operating economies in several ways. The RC/RM-series recirculates only the flow required to help ensure a minimum flow through the pump at all times. Under full process main flow demand, recirculation flow is not required. But as the process main flow demand decreases, recirculation becomes necessary. Unlike continuous recirculation, the RC/RM-series responds directly to this need. The use of on RC/RM-series valve eliminates the need to oversize the pump and prime mover. Such over-sizing adds significantly to the capital cost of the pump and prime mover as well as to the cost of energy needed for operation.

CONTENTS

General / RC/RM-Series	2
Feature and Benefit	3
Body Construction	4
Body Materials	5
Dimensions	7
RC/RM Series Specification Sheet	. 8

MODEL NUMBERING SYSTEM

Body Type	Body Size	Press. Rating	Body Materials	Connection Type
RC- Conventional	01-1"(25A)	HF -150#	CB- A216-WCB	FF-Flat Flange
trim	02 -1.5"(40A)	TH -300#	8M-A351-CF8M"	RF -Rajied flange
RM-Multi-Stage	03 -2"(50A)	SH -600#	8X-A351-CF8.	RTJ-Ring type joint
Trim	04- 2.5" (65A)	NH -900#	XX -Option	SW-socket weld
RX -X[iks]-trim	05 -3"(80A)	TF -1500#		BW-butt. weld
Disk Stack Type	06- 4"(100A)	TT- 2500#		SC-screwed
(Option)	07 -5"(125A)	XX-Option		XX-Option
	08- 6"(150A)			Ι
	09 -8"(200A)			
	10 -10"(250A)			
	11 -12"(300A)			

Features & Benefits

Feature

Self-Regulating valve function as integral check valve, flow sensing element, bypass control valve, bypass actuator and multi-step pressure let-down valve.

Saves installation and maintenance costs

- Needs no electrical wiring, plant or instrument air.
- Eliminates other components of a conventional system.

Reduced Down Time

Minimizes the problems of highvelocity wiredrawing and cavitation erosion common to high pressure drop service.

Benefits

- Eliminates high cost of installation and maintenance of complex conventi -onal flow control loops.
- Eliminates cavitation in the valve and piping.
- Only three pipe connections.
- Eliminates any power source or instru -ment signal.

Valve Sizes & Connection

- > 1" to 12" Main discharge feed.
- > 1" to 3" Recirculation discharge.
- > Flanged or Welding end connection.

Valve Pressure Ratings

> ANSI 150/300/600/900/1500/2500.

Temperature Limitations

500deg.F (260deg.C)

RC/RM-series for Pump Protection 3-way Automatic Recirculation Check Valve.

During critical low load periods, centrifugal feed pumps need a reliable recirculation system prevent pump instability and overheating. Because many such systems are constructed of a number of components, the system can become both complex and costly, requiring, substantial outlays for design, installation and maintenance.

BFS's RC/RM-series, on the other hand, is a complete system within itself. It actually performs four separate functions within the pumping circuit-all with on compact body. Essentially, the RC/RM-series is a check valve installed in the main line. But it also acts as the sensing and powering Element which pilots the operation of the recirculation control Valve. The sensing system responds to changes in flow rather than pressure.

The Control valve incorporates a pressure reducing device that divides recirculation flow and guides the resulting streams through successive 90deg. turns to dissipate the destructive of high pressure while controlling fluid velocity.

MATERIALS

Carbon Steel or Stainless Steel Body

	-196degC.	-20deg.C	350deg.C 425deg.C	450deg.C
Part No.	Name of Part		Temperature Range	
1	Lower Body	A351-CF8M	A216-WCB or A105	A351-CF8M
2	Upper Body	A351-CF8M	A216-WCB or A105	A351-CF8M
3	Disc	316SS+STF	420 SS	316SS+STF
4	Guide	316SS+STF	420 SS	316SS+STF
5	Stem		17-4PH / 630 SS	
6	Branch	316 SS	A216-WCB or A105	316 SS
7	Control Head	316 SS	420 SS	316 SS
8	Muti-Step-Nozzle	316SS+STF	420 SS	316SS+STF
9	Throat	316SS+STF	420 SS	316SS+STF
10	Relief Bush	316 SS	420 SS	316 SS
11	Nut		316 SS	
12	Piston-Ring	Teflon	Viton	Karlez
13	Lever	316 SS	420 SS	316 SS
14	Orifice	316 SS	420 SS	316 SS
15	Spring		304 SS	
16	Orifice-O-Ring	Teflon	Viton	Karlez
17	Bolt & Nut	316 SS	Steel	316 SS

Other Materials are available.

VALVE SIZE SELECTION GUIDE

Main Size	1.5" (40A)	2" (50A)	2.5" (65A)	3" (80A)	4" (100A)	5" (125A)	6"(150A)	8"(200A)
Main Flow	35m3/hr	50m3/hr	85m3/hr	130m3/hr	200m3/hr	300m3/hr	450m3/hr	800m3/hr
Disch. Size	1' (25A)	1" (25A)	1.5" (40A)	1.5" (40A)	2" (50A)	2" (50A0	2.5" (65A0	3" (80A)
Disch. Flow	15m3/hr	20m3/hr	40m3/hr	45m3/hr	60m3/hr	70m3/hr	125m3/hr	200m3/hr

- This table is only for your referance.

- Valve Friction Loss (Differential Pressure)

Delta P = (Actual Main Flow / Max. Main Floe)2 x 0.8 x S.G (unit/bar)

X-trim for HIGH DELTA-P SERVICE

X-trim application instead of multi-step Trim is highly suitable for high differential pressure service.

This pressure reduction device is for preventing from noise and vibration by controlling speed. Flow path with maze shape of Xtrim is highly effective for preventing from pipe damage caused by cavitations, noise and vibration. This is customized engineered design based on service condition. And discharge side dimension of standard main pipe connection is a bit bigger than standard discharge pipe connection

BODY CONSTRUCTION

RC-series / Automatic Recirculation Conventional Check Valve

RM-series / Automatic Recirculation Multi-stage Check Valve

DIMENSIONS RC/RM/RX-series

No	Size (in	ch/mm)	Press	Rating	D							
NU	in x out	discharge	¢	ANSI	А	В	С	Remarks				
1			10K	150#	200	155	75					
2			20K	300#	260	190	90					
3	1.5"(40A)	1"(25A)	40K	600#	260	190	90					
4			63K	900#	300	200	110					
5			100K	1500#	310	215	120					
6			10K	150#	230	160	90					
7			20K	300#	300	185	110					
8	2"(50A)	1"(25A)	40K	600#	300	190	110					
9			63K	900#	340	200	130					
10			100K	1500#	350	230	130					
11			10K	150#	290	175	110					
12			20K	300#	340	200	125					
13	2.5"(65A)	1.5" (40A)	40K	600#	340	220	125					
14			63K	900#	380	230	140					
15			100K	1500#	400	250	145					
16			10K	150#	310	190	115					
17			20K	300#	380	220	140					
18	3" (80A)	1.5" (40A)	40K	600#	380	240	140					
19			63K	900#	410	250	150					
20			100K	1500#	450	275	165					
21			10K	150#	350	210	125					
22			20K	300#	430	240	155					
23	4" (100A)	2" (50A)	40K	600#	430	265	155					
24			63K	900#	450	280	160					
25			100K	1500#	520	300	190					
26			10K	150#	400	265	135					
27			20K	300#	500	290	175					
28	5" (125A)	2" (50A)	40K	600#	500	300	175					
29			63K	900#	525	310	185					
31			10K	150#	480	295	165					
32			20K	300#	550	320	190					
33	6" (150A)	2.5" (65A)	40K	600#	550	335	190					
34			63K	900#	585	350	200					
35			100K	1500#	700	370	250					
36			10K	150#	600	360	200					
38	8" (200A)	3" (80A)	40K	600#	650	400	215					
39			63K	900#	675	400	225					
40			100K	1500#	850	450	295					

SPECIFICATION SHEET of RC-Series

Our sales representatives will help you select the correct valve for your application.

Please complete this form before contacting he sales office to help ensure all necessary information is Provided.

	SPECIFICATION SHEET													
	Automatic Recirculation Control Check Valve													
1	Project				Tag. No									
2	Customer				Qty		Item No							
3	Location				Model No									
4	Ref. No.				Serial No.									
5	Fluid				Date									
6	Service													
7	Pump Flow													
8		Unit	Max.	Min										
9	Flow	LPM												
10	Inlet Press	BarG												
11	Outlet Press	BarG												
12	Diff. Press	Bar												
13	Tdeg. C	deg.C												
14	Spec. Gravity	S.G												
15	Vapor Pressure	Bar												
16	Viscosity	СР												
	ump pressure a	m nmum pump												
18	3 RC-Series valve bypass line pressure													
19	Pump Discharge P	ressure			-									
20	Pump pressure at S	hut-off (zero flov	w)											
21	Pump pressure at N	lormal-process-f	low											
22	Pump pressure at m	ninmum pump p	rotection flow											
23	RC-Series valve byp	ass line pressure	2											
24	General Specificati	on												
25	Orientation of RC-S	eries Valve												
26	Type of End Connec	ction												
27	Pressure Rating													
28	Body Material													
29	Trim Material													
30	Seal Material													
31	Pump Drive Type													
32	Nace Materials Rec	quired												
33	Etc. Required													
				Note										
34	14													
35														
36	i6													
37	37													
38	Prepared			Approved		Rev.								
39	Prepared			Approved		0								

			Î		1	Ì					Î								
	 	 			 	<u> </u>	 			 			 	 	 	 	 	 	
					 	<u> </u>				 					 				
		 			1				_			_			 	 			
		 						_						 					
											1							 1	

	1	1		ì	í	1	1	Ì	 						Î	î	1	 	Î	1	Î	
				 					 	 	 	 	 	 		î				- i		 i
				 					 	 	 ;	 	 	 				 				
					ĺ												1					
-				 					 	 	 	 	 	 				 				
1																	- i				Ť	
				 					 	 	 ;	 	 	 				 				
	ĺ			 																		
	<u> </u>			 					 		 											
															I							
				 						 	 	 	 	 				 				 _
	1			·									 	 								
-				 					 	 	 	 	 	 								 -
	ļ			 					 	 	 	 	 	 				 				
-				 					 	 	 	 	 	 								
1																						
		<u> </u>		 						 	 		 	 								
																Î					Ì	
				 						 	 	 	 	 					1			
ļ			ļļ	 				<u> </u>	 		 	 	 	 			_					
1																						
		<u> </u>		 					 	 	 	 	 	 				 				 _
	[Î				i	Ť	
ļ	ļ			 																		
				 					 		 		 	 								 -
				1													ĺ			Ì		
			ļ	 	ļ				 		 											 (

Product Service Qualified Certificate

ISO 9001:2015

ISO 14001:2015

ISO 45001:2018

CE: Globe Control Valve

CE : Ball Valve

Research Institut

ASME U, PP Stemp

EAC : RUSSIA TRCU

API 6D / 600 By KSM

GVK(GRC/RM/RX) AUTO-RECIRCULATION VALVE

Total Engineering Solution Service

GVK CO.,LTD.

HEAD OFFICE

Techno Valley C-503, 236, Jubuto-ro, Bupyeong-gu, Incheon, Republic of Korea

> TEL +82-32-678-7972 FAX +82-32-678-7973 EMAIL ican@gvkvalve.com

> > www.gvkvalve.com